Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/257870 
Year of Publication: 
2019
Citation: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 7 [Issue:] 1 [Article No.:] 32 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-15
Publisher: 
MDPI, Basel
Abstract: 
This paper studies the optimal investment and consumption strategies in a two-asset model. A dynamic Value-at-Risk constraint is imposed to manage the wealth process. By using Value at Risk as the risk measure during the investment horizon, the decision maker can dynamically monitor the exposed risk and quantify the maximum expected loss over a finite horizon period at a given confidence level. In addition, the decision maker has to filter the key economic factors to make decisions. Considering the cost of filtering the factors, the decision maker aims to maximize the utility of consumption in a finite horizon. By using the Kalman filter, a partially observed system is converted to a completely observed one. However, due to the cost of information processing, the decision maker fails to process the information in an arbitrarily rational manner and can only make decisions on the basis of the limited observed signals. A genetic algorithm was developed to find the optimal investment, consumption strategies, and observation strength. Numerical simulation results are provided to illustrate the performance of the algorithm.
Subjects: 
genetic algorithm
investment
Value-at-Risk
rational inattention
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.