Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/257864 
Year of Publication: 
2019
Citation: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 7 [Issue:] 1 [Article No.:] 26 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-19
Publisher: 
MDPI, Basel
Abstract: 
Estimation of future mortality rates still plays a central role among life insurers in pricing their products and managing longevity risk. In the literature on mortality modeling, a wide number of stochastic models have been proposed, most of them forecasting future mortality rates by extrapolating one or more latent factors. The abundance of proposed models shows that forecasting future mortality from historical trends is non-trivial. Following the idea proposed in Deprez et al. (2017), we use machine learning algorithms, able to catch patterns that are not commonly identifiable, to calibrate a parameter (the machine learning estimator), improving the goodness of fit of standard stochastic mortality models. The machine learning estimator is then forecasted according to the Lee-Carter framework, allowing one to obtain a higher forecasting quality of the standard stochastic models. Out-of sample forecasts are provided to verify the model accuracy.
Subjects: 
mortality
forecasting
machine learning
Lee-Carter model
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.