Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/247541 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] Econometrics [ISSN:] 2225-1146 [Volume:] 7 [Issue:] 3 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-15
Verlag: 
MDPI, Basel
Zusammenfassung: 
We propose a methodology to include night volatility estimates in the day volatility modeling problem with high-frequency data in a realized generalized autoregressive conditional heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between the realized measure and the conditional variance. This improves volatility modeling by adding, in a two-factor structure, information on latent processes that occur while markets are closed but captures the leverage effect and maintains a mathematical structure that facilitates volatility estimation. A class of bivariate models that includes intraday, day, and night volatility estimates is proposed and was empirically tested to confirm whether using night volatility information improves the day volatility estimation. The results indicate a forecasting improvement using bivariate models over those that do not include night volatility estimates.
Schlagwörter: 
bivariate GARCH
forecasting
high-frequency
realized measures
volatility
JEL: 
C32
C53
C58
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.