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Abstract: We propose a methodology to include night volatility estimates in the day volatility
modeling problem with high-frequency data in a realized generalized autoregressive conditional
heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between
the realized measure and the conditional variance. This improves volatility modeling by adding, in a
two-factor structure, information on latent processes that occur while markets are closed but captures
the leverage effect and maintains a mathematical structure that facilitates volatility estimation. A class
of bivariate models that includes intraday, day, and night volatility estimates is proposed and was
empirically tested to confirm whether using night volatility information improves the day volatility
estimation. The results indicate a forecasting improvement using bivariate models over those that do
not include night volatility estimates.

Keywords: high-frequency; volatility; forecasting; realized measures; bivariate GARCH

JEL Classification: C32; C53; C58

1. Introduction

We aim to improve volatility modeling by adding information that exists on latent volatility
processes while the markets are closed and no transactions occur. We build upon the observation that
the price at market closing usually differs from the price at market opening, despite no transactions
occurring between the two recordings. Models previously proposed usually estimate volatility by
including information on past day and intraday volatility, estimated from day-recorded prices and
sampled at various time intervals. Some papers have proposed methods to address overnight returns.
The latent volatility component apparent in periods when markets are closed, highlighted by the
difference between the two prices, may be the effect of events that occurred during the market closing,
both domestic or international, or may be due to other latent factors that usually influence the financial
markets, and may prove useful in volatility modeling. We propose an estimation of this night latent
volatility and suggest a new model that uses day, intraday, and night volatility information to model day
volatility. What distinguishes our contribution from other papers published on similar topics is that we
propose a two-factor structure in a realized generalized autoregressive conditional heteroskedasticity
(GARCH) setting that takes advantage of the natural relationship between the realized measure and the
conditional (day and night) variance. The mathematical structure is thus elegant, facilitates volatility
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estimation, and allows the inclusion of return-volatility dependence. We call the structure bivariate
because it uses both day and night volatility information, as opposed to the univariate ones that only
use day information. To strengthen the robustness of our empirical research, we further extended this
idea to a number of realized GARCH models that use day and intraday volatility information, creating
an equivalent set of bivariate models that additionally use night volatility information. We obtained a
class of realized GARCH models that incorporate day, night, and intraday volatility measures; they
were assessed against their counterparts that did not include night volatility information using an
extended set of 10 stock prices. Empirical results of the forecasting performance assessment show a
degree of improvement of the newly proposed models over those that do not include night volatility
measures. This finding suggests the potential of our method for volatility forecasting problems for
financial assets and other assets with night latent volatility information.

Financial volatility modeling has benefited significantly from the availability of high-frequency
data. The main interest in modeling using frequently sampled information and integrating it into
models built to estimate day conditional variance was initiated by Andersen and Bollerslev (1998), who
used realized volatility estimates extracted from intraday data (realized variance) as better estimates of
conditional volatility than squared returns. They proved that by adding up squared intraday returns,
the forecasted volatility would correlate closely to the future latent volatility factor.

Engle (2002) was among the first econometricians who extended the standard GARCH model to
include an exogenous realized measure (the realized variance) in the conditional variance (GARCH)
equation. In this model, the realized measures’ variation is not explained; thus, such models (GARCH-X)
are considered incomplete. Engle and Gallo (2006) proposed the multiplicative error model (MEM),
which was the first attempt to contain a separate GARCH structure equation for the realized measure.
A similar complete model nested in a MEM setting is the high frequency based volatility (HEAVY)
model of Shephard and Sheppard (2010). Both MEM and HEAVY models are difficult to use as
they work with multiple latent processes—for every realized measure used, there is a corresponding
latent volatility process. The Realized GARCH model proposed by Hansen et al. (2012) combines
a GARCH structure for returns with realized measures of volatility. Compared with MEM and
HEAVY models, the Realized GARCH model takes advantage of the natural relationship between
the realized measure and the conditional variance. Instead of introducing additional latent factors, it
proposes a single measurement equation in which the realized measure is a consistent estimator of
the integrated variance. Besides its elegant mathematical structure, the Realized GARCH model is
easy to estimate, captures the return-volatility dependence (leverage effect), and has been empirically
shown to outperform conventional GARCH. A more robust version of the Realized GARCH model
was introduced by Banulescu-Radu et al. (2019), suggesting a variant that is less sensitive to outliers
and minimizes the impact on volatility of days with extreme negative volatility shocks. A realized
exponential GARCH model that can use multiple realized volatility measures for the modeling of a
return series, using a similar framework, has also been proposed (Hansen and Huang 2016). Finding
that the Realized GARCH model was insufficient for capturing the long memory of underlying
volatility, Huang et al. (2016) developed a parsimonious variant of the Realized GARCH model by
introducing Corsi’s (2009) heterogeneous autoregressive (HAR) specification in the volatility dynamics.
A multivariate GARCH model that incorporates realized measures of variances and covariances was
also introduced by Hansen et al. (2014), but it did not suggest the introduction of night volatility
information. Bollerslev et al. (2018) proposed asymmetric multivariate volatility models that exploit
estimates of variances and covariances based on the signs of high-frequency returns to allow for
more nuanced responses to positive and negative return shocks than the threshold leverage effect.
Hansen et al. (2019) proposed a multivariate GARCH model that incorporates realized measures for
the covariance matrix of returns.

Overnight (close-to-open) volatility is usually higher than the five-minute realized volatility
estimated during trading hours, and the close-to-open price differential may trigger a distorting
effect on the realized volatility. Thus, the inclusion of overnight returns when constructing the
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realized conditional covariance matrix of the daily returns has been empirically documented to reduce
information loss and consequently improve volatility forecasting. A common approach to account for
volatility during the market’s closing hours has been to calculate a close-to-open return from the price
change recorded between the trading day closing and the next trading day opening, and then add its
squared value to the sum of intraday returns (Bollerslev et al. 2009; Martens 2002; Blair et al. 2001).
Hansen and Lunde (2005) compounded optimal weights corresponding to overnight returns and to the
sum of intraday returns, and Fleming and Kirby (2011) and Fuertes and Olmo (2013) further applied
it. De Pooter et al. (2008) and Fleming et al. (2003) computed it in matrix form by incorporating the
cross-product of the vector of overnight returns in the summation of the matrix that provided the
covariance matrix of the daily returns, acknowledging that the outer product of the vector of overnight
returns is an inaccurate estimator of the integrated covariance matrix for the period when markets were
closed (Fleming et al. 2003). Koopman et al. (2005); Martens (2002); and Angelidis and Degiannakis
(2008) excluded the noisy overnight returns to compute an estimate of volatility during trading hours,
instead of daily volatility; then, they scaled up the sum of intraday returns to cover the whole 24-h day.
The literature has not yet reached a consensus on the best method of accounting for overnight returns;
however, Ahoniemi and Lanne (2013) suggested that the weighted sum of the squared overnight return
and the sum of intraday squared returns was the most accurate measure of realized volatility for the
Standard&Poor’s’ S&P 500 index.

This paper suggests a method of capturing and incorporating night volatility into the day
conditional volatility equation of one low-frequency as well as a number of high-frequency GARCH
models. We propose a two-factor structure of the conditional variance, one for night and one for day
variance, in a realized GARCH setting that takes advantage of the natural relationship between the
realized measure and the conditional (day and night) variance. The mathematical structure is thus
elegant, facilitates volatility estimation, and allows the inclusion of the return-volatility dependence. A
general framework is formulated; based on it, a set of GARCH models is adapted such that it uses the
estimation of night latent volatility to model day conditional volatility. This approach enabled us to
document, in an empirical context, whether the introduction of the night volatility component, in the
two-factor structure and realized GARCH setting we propose, improved the volatility modeling for
each of the models discussed. The new models are called bivariate as they use both night and day
volatility information and are defined to work in typical financial settings, such as volatility modeling
of stock and commodity prices. We assessed the performance of the bivariate models by comparing the
error functions of the forecasts of the bivariate models with those obtained when the simple versions
of the models, which do not use night volatility information, were used. We call the latter models
univariate models. The scope of this study was thus to analyze whether the use of night volatility
information in the forms proposed improves the modeling of day volatility.

The paper proceeds as follows. Section 2 proposes the new set of bivariate realized models.
Section 3 describes the data and methodology, and Section 4 summarizes the results. The paper
concludes with Section 5, where final remarks are presented, and some future lines of research
are proposed.

2. Bivariate Realized Models

2.1. Base Model

Existing high-frequency GARCH models estimate day conditional variance using day and intraday
volatility information. We developed a class of realized models that allow constructing day volatility
estimates with day, intraday, and night volatility information. Models previously proposed use return
and volatility information estimated from trades that occurred during the trading day to estimate
next-day volatility. However, latent volatility existing between the trading periods (called night
volatility) has scarcely been considered in the day volatility estimation problem. The idea emerged
from an observation on financial stock time series; prices at market closing differ from those at market
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opening the following trading day, although during the night the market is closed and thus no
transactions occur, so no intranight information exists. Despite the lack of night trades, latent (night)
volatility still occurs, causing a price mismatch. We examined whether this latent night volatility can
be modeled and whether, if incorporated into the conditional volatility modeling, it would help to
provide better estimates of day volatility. Compared to other researchers that also modeled overnight
returns, we proposed a two-factor structure in a realized GARCH setting with a GARCH equation
that links day/night volatility to returns, night/day volatility, and intraday volatility of the previous
day. This allowed us to retain the benefits of the Realized GARCH model of Hansen et al. (2012),
namely, to take advantage of the natural relationship between the realized measure and the conditional
day (and night for the models we proposed in the current paper) variance in an elegant structure
that facilitates volatility estimation, allowed us to capture the return-volatility dependence, and was
previously proved to outperform traditional GARCH. Below, we presented a method to capture this
volatility and to insert it into the day conditional volatility equation.

The starting model is a reduced form Bivariate Realized GARCH model, which is a Realized
GARCH model with night volatility information and exogenous realized measures, defined as follows:
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. As such, rt is

the sum between night r•t and day r
◦

t returns, z
◦

t represents the standardized day returns, and z•t
represents the standardized night returns, whereas µ

◦

is the means of day returns and µ• is the means
of night returns. All τ’s are coefficients of the standardized returns that follow to be estimated through
the maximum log-likelihood function (MLE). If marked by ◦, τ represents the coefficients of the
standardized returns in the equation of conditional day volatility, and if marked by •, τ represents the
coefficients of the standardized returns in the equation of conditional night volatility. The numbers next
to ◦ or • are for indexing purposes: For example, τ(

◦1) and τ(
◦2) are two coefficients of the standardized

returns in the equation of conditional day volatility that follow to be estimated through MLE.
Thus, the base model is formed of three equations: The return equation, which is the sum

between day (open-to-close) returns and night (close-to-open) returns, and two conditional volatility
equations, as follows: The first expresses day volatility as a function of previous day (z

◦

t−1) and night
(z•t−1; standardized) returns, conditional day variance (h

◦

t−1), and a realized measure of volatility (xt−1;
realized kernel, high–low, realized variance, etc.). The second defines night volatility as a function
of previous day (z

◦

t−1) and night (z•t−1; standardized) returns, conditional night variance (h•t−1), and a
realized measure of volatility (xt−1). Notably, in this model (called reduced form for this reason), the
realized measure is not endogenized nor linked to the day volatility measure through a measurement
equation, but rather is treated as an exogenous variable. We added this equation to the complete form
of the model that was documented in the next section. The realized measure was compounded from
intraday prices recorded throughout the day.

2.2. Extended Models

We used the base model structure and extended its idea to a class of best-known GARCH-type
models. We used this approach as all models used share the same structure and thus similar properties,
which enabled us to set up a similar bivariate configuration. The aim was to construct a group of models
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that takes advantage of night volatility estimation, and also defines the existing natural relationship
between the realized measures and the conditional day and night variance. As such, we proposed
four new realized models and one non-realized model: Bivariate Realized GARCH (1,1), with an
endogenous component of realized measure and therefore a separate measurement equation, which we
will call a complete version model; Bivariate Exponential GARCH-X (Bivariate EGARCH-X), that is a
bivariate exponential generalized autoregressive conditional heteroskedastic model with an exogenous
realized measure; Bivariate Realized EGARCH (1,1); Bivariate Realized GARCH (2,2); and Bivariate
EGARCH (1,1). The detailed specifications of the bivariate models we propose are provided in Table 1.

Table 1. Summary of the bivariate realized generalized autoregressive conditional heteroskedasticity
(GARCH) models proposed.
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Next, we summarized the main features of each model. All share similar return equations as in the
case of the base model—the daily return rt is the sum between open-to-close return (day return) r

◦

t and
close-to-open return (night return) r•t . The GARCH equations share distinct properties but they have
unique features as well. All define the day (open-to-close) volatility h

◦

t as a function of day z
◦

t and night
z•t standardized returns as defined above, and also as a function of the previous day (open-to-close)
volatility. Except for the Bivariate EGARCH (1,1) and the reduced form Bivariate Realized GARCH
models, all other models also include the relationship between day volatility h

◦

t and intraday volatility
xt−1 in the GARCH equation. Since Bivariate EGARCH (1,1) is not a realized model, it does not contain
intraday information. In our Bivariate EGARCH-X model, intraday volatility xt−1 is treated as an
exogenous variable and is thus not linked to any other variable. However, all other realized models



Econometrics 2019, 7, 41 6 of 15

incorporate a third equation, the measurement equation, which defines the joint dependence between
rt and xt. xt is thus “endogenized” by being formulated as a function of day (open-to-close) volatility,
night (close-to-open) volatility, and day and night standardized returns (z

◦

t and z•t , respectively).

3. Data and Estimation Methodology

We used tick data sampled along 3537 trading days during the period of 30 August 2004–31
December 2018, corresponding to 10 stocks: AIG (American International Group, Inc.), AXP (American
Express Company), BAC (Bank of America Corporation), CSCO (Cisco Systems, Inc.), F (Ford Motor
Company (F)), GE (General Electric Company), INTC (Intel Corporation), JPM (JPMorgan Chase &
Co.), MSFT (Microsoft Corporation), and T (AT&T Inc.). To avoid the outliers that would result from
quiet days, the half trading days around the Christmas and Thanksgiving holidays were removed.

We opted for estimating intraday volatility by compounding realized kernels instead of the more
widely used realized variance, as it is generally acknowledged that squared daily returns provide a
poor estimation of actual intraday volatility. Realized kernels are robust for microstructure errors or
frictions, which are known to cause endogenous and dependent noise terms. They are used to estimate
the quadratic variation in an efficient price process when the time stamps in every day do not match
(non-synchronous, with irregularly spaced observations) and when the high-frequency time series
described by the prices are noisy with many microstructure effects. We compounded the realized kernels
as measures of intraday volatility (xt) using the methodology of Barndorff-Nielsen et al. (2009, 2011).
The framework is given by Y, a variable that is the sum of a Brownian semi-martingale and a jump
process, as follows:

Yt =

∫ t

0
audu +

∫ t

0
σudWu + Jt. (4)

For the purpose of our exercise, we need to find the quadratic variation of Y, [Y] =
∫ T

0 σ2
udu +∑NT

i=1 C2
i . Barndorff-Nielsen et al. (2009, 2011) estimated it from the noisy discrete observations Xτ j of

Yτ j , 0 = τ0 < τ1 < . . . < τn = T, where Xτ j = Yτ j + Uτ j and Uτ j represents the market microstructure
effects (noise). Barndorff-Nielsen et al. (2009, 2011) estimated this quadratic variation by proposing
realized kernels, a non-negative estimator that is constructed as follows.

The first challenge with the tick data is the non-synchronicity. Non-synchronous trading occurs
when the trades or quotes appear at irregularly spaced times across stocks, which is usually the case in
stock markets, especially those with low liquidity or stale prices. Barndorff-Nielsen et al. (2011) solved
this by suggesting a refresh time when all the stocks are traded. We implemented the same method by
recording the prices only when (and immediately after) all of them were traded.

To eliminate start and end effects and their associated errors, which are averaged through this
procedure, we proceeded to jittering (averaging) the first and last two prices, as also suggested by
Barndorff-Nielsen et al. (2011)Barndorff-Nielsen et al. Having synchronized and constructed the time
series by jittering at the initial and final time points, we defined the semi-definite realized kernels, as
follows, according to Barndorff-Nielsen et al. (2009, 2011):

K(X) =
∑

H
h=−Hk(

h
H + 1

)γh, where γh =
∑

n
j=|h|+1x jx j−|h|, (5)

where k(x) is a kernel weight function that has the k(0) = 1, k′(0) = 0 property, and k is twice
differentiable with continuous derivatives.

Barndorff-Nielsen et al. (2009) used a Parzen kernel as it satisfies the smoothness conditions
through k′(0) = k′(1) = 0, and its estimates are positive. We made the same choice, and used the same
Parzen kernel function:

k(x) =


1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 ≤ x ≤ 1
0, x > 1

. (6)
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The optimal choice of bandwidth, according to Barndorff-Nielsen et al. (2009), which we chose to

use, is H∗ = c∗ξ4/5n3/5, with c∗ =
{

k′′ (0)2

k0,0
•

}1/5
and ξ2 = ω2√

T
∫ T

0 σ4
udu

, where c∗ = ((12)2)
1/5

= 3.5134 for

the Parzen kernel.
∫ T

0 σ4
udu is called the integrated quarticity, and, in our empirical exercise, it equals

RVsparse. This denotes a subsampled realized variance based on 20-min returns. By calculating 1200
realized variances by shifting the first observation recorded time in 1-s increments, we obtained a
number of realized variance estimators. We averaged them and obtained RVsparse. ω2 was estimated
by calculating the realized variance using every ith trade. We varied the starting point, and thereby
produced i realized variances, namely RVi

dense. Thus, our ω2 estimator was calculated as:

ω̂2
( j) =

RV( j)
dense

2n( j)
, j = 1, . . . , i, (7)

where n( j) is the number of non-zero returns used to estimate RV( j)
dense. The estimate of ω2 is then the

average of the j estimates,

ω̂2 =
1
i

∑
i
j=1ω̂

2
( j). (8)

By design, the realized kernel is positive semi-definite and the rate of convergence is n1/5.
We estimated the in-sample and out-of-sample (3000th day in the sample, 24 November 2016,

the cutoff point) in both the univariate and bivariate models with respect to each of the 10 stocks.
The univariate models considered are the standard realized versions of the GARCH model (Realized
GARCH, Realized EGARCH, EGARCH-X, and Realized GARCH (2,2)), as well as the EGARCH model.
The estimated bivariate models are those mentioned in Section 2 (Bivariate EGARCH, reduced and
complete forms of Bivariate Realized GARCH, Bivariate Realized EGARCH, Bivariate EGARCH-X,
and Bivariate Realized GARCH (2,2)).

The estimation was performed by maximizing the total log-likelihood functions (MLE), namely
the sum of partial log-likelihood functions for the returns and for the intraday measures; the ranking
criterion with respect to the MLE was the partial log-likelihood function for returns solely. We used
MLE to estimate both the proposed bivariate models and a number of univariate models that do not
include night volatility information.

The log-likelihood function used in the estimation of the above models takes
the form l

(
r•t , r

◦

t , xt
)

= L1 for Bivariate EGARCH and Bivariate EGARCH-X, or

l
(
r•t , r

◦

t , xt
)

= L1 + L2 for Bivariate Realized GARCH complete version, Bivariate Realized
EGARCH (1,1), and Bivariate Realized GARCH (2,2) (Appendix A), where L1 =

−
1
2
∑n

t=1

2 log(2π) + log
(
1− ρ2

)
+ log h•t + log h

◦

t +
(r•t − µ

•)2/h•t +(r
◦

t − µ
◦

)
2
/h
◦

t
(1 − ρ2)

−
2ρ

(1 − ρ2)

(r•t − µ
•)(r

◦

t − µ
◦

)√
h•t h

◦

t


and L2 = − 1

2
∑n

t=1

{
log(2π) + log

(
σ2

u

)
+ u2

t /σ2
u

}
.

To evaluate whether introducing night volatility estimations in models’ equations improves the
day volatility estimation, we calculated two loss functions, root mean squared error (RMSE) and mean
absolute error (MAE). Based on these, we documented the number of models for each in-sample
and out-of-sample estimation for each of the 10 stocks, at which MAE and RMSE were smaller. This
allowed us to draw conclusions about the better performance of the bivariate or univariate models.
Based on the size of the loss functions obtained at each estimation, we analyzed the performance of the
new models that included night volatility estimates. This contributed to our objective by documenting
whether or not night volatility information improves the estimation of day volatility with respect to
the main GARCH-type of models proposed in the literature.

The maximized log-likelihood functions in univariate and bivariate estimations are provided
in Tables A1 and A2 in Appendix B. As the log-likelihood functions of the bivariate models
differ from those of the univariate versions (for the bivariate estimation, we maximized a
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bi-dimensional vector
(

r•t
r
◦

t

)
with a non-null correlation factor (ρ) between its subvectors), it

makes little sense to compare the values of the MLEs across the univariate and bivariate
models to document an improvement or loss of performance when introducing night
volatility estimates. Specifically, the log-likelihood function for the bivariate models is:

log l(r•t , r
◦

t ) = −
1
2
∑n

t=1

2 log(2π) + log
(
1− ρ2

)
+ log(h•t ) + log(h

◦

t ) +
r•t

2/h•t + r
◦

t
2/h

◦

t
(1 − ρ2)

−
2ρ

(1 − ρ2)

r•t r
◦

t√
h•t h

◦

t

,

where ρ = corr
(
r
◦

t , r•t
)
. In the univariate models’ case, the log-likelihood function is

log l(rt) = −
1
2
∑n

t=1

[
log(2π) + log

(
ht

)
+

(rt − µ)
2

ht

]
for EGARCH and EGARCH-X, and log l(rt) =

−
1
2
∑n

t=1

[
2 log(2π) + log

(
ht

)
+

(rt − µ)
2

ht
+ log

(
σ2

u

)
+

u2
t
σ2

u

]
for Realized EGARCH, Realized GARCH, and

Realized GARCH (2,2). As such, we could not use this method to evaluate the performance of the
bivariate models, as we would be comparing the values of estimations of different functions.

Thus, for the purpose of documenting the gain or loss in accuracy, we used the standard method
in econometrics for evaluating the models’ performance—that of calculating two loss functions (RMSE
and MAE)—which would better assess whether adding night volatility information with a two-factor
structure in a realized GARCH setting improves estimations of next-day volatility.

4. Results

The standard method used in econometrics to evaluate models’ performance is to calculate the size
of the loss functions, among which RMSE and MAE are the most common and reliable. We calculated
them for both in-sample and out-of-sample estimations, and our results indicate an improvement
when night volatility estimations were included in the equations of the day conditional volatility in
almost every case.

We worked with a number of models that have different features and for which adding an
estimation of night volatility may contribute to the volatility estimation. For example, by inspecting
the results for RMSE (in-sample estimation) in Table 2, the improvement was evident for 55 out of 60
cases (1 loss function result × 6 models evaluated × 10 stocks). The cases in which the improvement
could not be documented are marked with red (for RMSE) or green (for MAE) numbers in Table 2.
In the five cases in which this was not evident, four of them were for Realized GARCH (2,2). This
means that Realized GARCH (2,2) only shows some features that did not work better when the night
volatility estimates were considered given the way in which the model was designed. This may be
because, compared to the other models that model next-day volatility by only using information from
the previous day and night, Realized GARCH (2,2) uses information on the previous night volatility as
well as information on returns and volatility of the previous two days. We thought that this might
be the problem with this model, but it would need to be proven empirically; we left this question for
future work.
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Table 2. Loss functions in univariate and bivariate estimations; in-sample.

Stock
EGARCH EGARCH-X Realized

EGARCH Realized GARCH
Realized
GARCH

(2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Univ Biv (red) Univ Biv

AIG
RMSE 203.3 188.6 203.7 195.1 189.8 195.8 254.0 218.2 254.0 219.7 190.6 250.2
MAE 18.0 15.1 20.1 16.5 17.2 15.2 22.9 21.0 22.9 21.1 17.4 21.4

AXP
RMSE 6.9 6.3 6.7 6.2 6.8 5.5 6.8 5.5 7.0 5.2 7.0 7.1
MAE 3.1 2.3 3.1 2.6 3.1 2.2 3.2 2.0 3.3 1.9 3.0 2.3

BAC
RMSE 16.7 15.9 16.3 15.4 15.9 15.1 16.2 15.7 16.4 15.3 15.9 15.1
MAE 4.5 3.5 4.0 3.2 4.1 2.8 4.3 3.0 3.8 3.1 4.2 2.7

CSCO
RMSE 6.5 5.6 6.6 6.4 6.8 5.7 6.4 5.5 6.8 5.9 6.8 6.6
MAE 3.1 2.2 3.1 2.4 3.3 2.5 3.0 2.2 3.0 1.9 3.2 2.3

F
RMSE 16.9 16.3 16.4 15.1 16.3 15.5 16.1 15.7 16.5 15.3 16.2 14.8
MAE 4.0 3.2 3.8 3.3 4.2 3.3 4.3 3.3 4.2 2.9 4.0 3.0

GE
RMSE 6.8 6.0 6.9 6.5 6.6 5.8 6.9 5.5 6.7 5.5 6.4 7.0
MAE 3.3 1.9 2.7 2.2 3.1 1.8 3.2 2.2 3.2 1.8 2.8 2.4

INTC RMSE 16.6 15.9 16.3 15.4 16.4 15.3 16.5 15.0 16.5 15.1 16.1 15.2
MAE 4.4 3.1 4.0 3.5 4.3 3.1 4.2 3.0 3.7 3.2 3.9 2.7

JPM RMSE 11.4 10.4 11.1 9.7 10.7 10.6 11.1 9.9 10.8 10.1 11.1 9.9
MAE 3.9 2.6 3.5 2.7 3.5 2.7 3.3 3.0 3.6 2.2 3.6 2.7

MSFT
RMSE 6.8 6.4 6.6 6.1 6.8 5.6 6.9 5.6 6.8 5.5 6.6 7.1
MAE 3.3 1.8 2.8 2.5 3.1 2.1 3.3 2.0 3.4 2.1 3.4 2.9

T
RMSE 16.8 15.9 16.5 15.2 16.7 15.2 16.4 15.4 16.6 15.7 16.2 14.9
MAE 4.3 3.5 4.2 3.4 4.0 3.0 4.1 3.0 4.5 3.5 4.5 3.1

This conclusion was strengthened by examining the MAE results. When considering MAE as
an evaluation tool, the bivariate models produced superior forecasting ability in 59 out of 60 cases,
indicating an improvement for the models that included night volatility estimation in the day volatility
modeling. However, in only one case out of 60 was the improvement not evident, for the same Realized
GARCH (2,2) model. As such, the model itself appears to be problematic, not the evaluation we
performed. As mentioned above, we thought that the problem with this model was that it models
conditional day volatility by including in the model information on day volatility and returns from
the previous two days, instead of one day only as we did for the other models. In Bivariate Realized
GARCH (2,2), we considered only one-night volatility information instead of considering the night
volatility estimation from the previous two nights.

Univ and Biv stand for Univariate and Bivariate, respectively, while com and red stand for complete
and reduced, respectively. Red and green numbers indicate the stances in which bivariate models
perform worse than the univariate ones (when evaluated according to RMSE or MAE, respectively).

When examining the results for the out-of-sample estimations in Table 3, we found that of 60
evaluations with RMSE, 53 showed forecasting improvement when night volatility information was
used. In the seven cases in which the improvement was not evident, three were recorded for the same
Realized GARCH (2,2) model. The remaining four belonged to various other models, one for each.
However, we observed another pattern. Most of the failures in documenting an improvement were
for the same stock: AIG. This suggests that the results were sensitive not only to the model (as we
explained earlier with the way in which Realized GARCH (2,2) was built), but were also sensitive to
the stock choice. Since AIG persistently failed in showing an improvement when using night volatility
information, AIG price recordings should be more carefully examined to understand what makes it less
sensitive to this modeling suggestion, including examining the amount of the stock price differential
(the difference between the market closing and the market opening prices), and also understanding the
roots of the volatility transmission for this stock in particular. Again, we left this as exploratory work
for the future paper. When ranked according to MAE, 58 results out of 60 indicated improvement,
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whereas only two cases (among them, one for Realized GARCH (2,2)) did not. Again, both estimations
indicated strong evidence in favor of including night volatility estimation in the modeling problem of
day volatility.

Table 3. Loss functions in univariate and bivariate estimations; out-of-sample.

EGARCH EGARCH-X Realized
EGARCH Realized GARCH

Realized
GARCH

(2,2)

Stock Univ Biv Univ Biv Univ Biv Univ Biv (com) Univ Biv (red) Univ Biv

AIG
RMSE 565.5 574.3 552.0 532.9 544.0 566.4 552.9 572.4 552.9 573.3 538.9 584.7
MAE 109.0 100.4 106.9 104.1 103.8 102.5 122.0 103.1 122.1 103.0 104.6 121.1

AXP
RMSE 14.3 14.0 14.5 13.3 14.2 12.8 14.0 13.0 14.0 12.6 13.9 12.8
MAE 8.8 8.1 9.0 9.1 8.6 7.8 8.7 7.7 8.7 8.1 9.0 7.7

BAC
RMSE 44.0 43.1 43.2 42.1 44.5 42.6 43.5 42.1 43.3 42.6 43.3 43.1
MAE 19.4 17.7 18.4 17.6 18.0 17.2 18.3 17.8 18.6 17.2 18.0 17.4

CSCO
RMSE 14.2 14.2 14.4 13.1 14.3 13.2 13.9 12.8 14.2 13.1 13.8 12.7
MAE 8.9 8.0 9.0 8.9 8.7 7.8 9.0 8.1 9.0 8.0 9.2 8.1

F
RMSE 44.0 43.0 43.0 42.4 44.3 42.3 43.4 42.6 43.5 42.0 43.3 43.4
MAE 19.1 18.1 18.6 17.4 18.6 16.7 18.5 17.9 18.3 17.0 18.6 17.0

GE
RMSE 14.7 14.4 14.3 13.3 14.0 13.3 13.9 12.7 14.3 12.6 13.9 13.0
MAE 9.5 7.6 8.8 8.7 8.6 7.8 8.8 8.2 8.4 8.0 9.4 7.8

INTC
RMSE 44.4 43.3 43.2 42.2 44.4 42.0 43.7 42.2 43.4 41.9 43.4 43.3
MAE 19.6 18.1 18.5 17.1 18.2 17.0 18.4 18.0 18.3 17.1 18.3 17.3

JPM RMSE 26.7 26.1 26.1 25.3 25.4 24.0 25.2 24.8 25.5 24.6 25.4 25.1
MAE 12.5 11.9 12.9 11.6 12.1 10.9 12.1 11.7 12.4 11.9 12.3 11.3

MSFT
RMSE 14.6 14.3 14.0 13.5 13.8 13.2 13.7 12.7 14.3 12.7 14.0 12.3
MAE 8.7 8.0 9.2 9.0 8.6 7.6 8.5 7.6 8.8 8.1 9.0 7.7

T
RMSE 43.8 42.9 43.1 42.3 43.8 42.5 43.3 42.1 43.4 42.0 43.2 43.4
MAE 19.6 17.9 18.4 17.5 18.0 16.7 18.3 17.6 18.6 17.0 18.3 17.6

Counting the number of cases that fail to show improvement is valuable for two reasons: (1) It is
the best tool when comparing models evaluated through MLE given that the log-likelihood functions
were not similar for looking at the size of the MLE values; and (2) the cases in which we failed to see
improvement indicated some consistency for a specific model and a specific stock. This opens the
opportunity for future work in which we might try to understand why the Realized GARCH (2,2)
model and AIG stock persistently indicated less evidence compared with other models and stocks,
where by adding night volatility information, we produced improved volatility estimation.

Red and green numbers indicate the stances in which bivariate models perform worse than the
univariate ones (when evaluated according to RMSE or MAE, respectively).

Thus, we concluded that the proposed bivariate models improved the forecasting performance
compared with the univariate models; as such, adding night volatility estimations according to the
methodology suggested improves next-day volatility estimates.

5. Conclusions

This paper provided a methodology that captures and integrates night volatility into the modeling
of day volatility. In univariate context, this method led to formulating four bivariate realized GARCH
models (Bivariate EGARCH-X, Bivariate Realized GARCH, Bivariate Realized GARCH (2,2), and
Bivariate Realized EGARCH) and one bivariate non-realized model (Bivariate EGARCH). The novelty
of this method is the incorporation of a night measure of volatility into the models, computed from
price changes between the closing and opening of the trading market with a two-factor structure of
the conditional variance in a realized GARCH setting that takes advantage of the natural relationship
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between the realized measure and the conditional variance. This captures the leverage effect and
maintains an elegant mathematical structure that facilitates the estimation of volatility.

With respect to assessing forecasting performance, the first finding was that rankings were
sensitive to the stock and model choice but displayed little sensitivity to the ranking criterion and
estimation methodology. However, the bivariate models were proved to perform better in most
instances, compared with the univariate models. As such, we concluded that by adding night volatility
estimates in the volatility models according to the methodology described, better estimates of next-day
volatility could be obtained. This represents a step further from including high-frequency data in
the modeling problem of the GARCH models in that estimates of night volatility are added into the
equation of the day conditional variance according to the novel methodology we suggest.

The assessment to multivariate assets (e.g., portfolios of stocks) could be extended in future work
by documenting a method of forecasting volatility of assets using the principal component (PC) analysis
or other statistical procedures that use the orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables, taking advantage
of the autoregressive conditional heteroskedastic models we proposed that use estimates of day,
intraday, and night volatility. We might refer to these models as PC Bivariate Realized GARCH
models and these might be used to formulate the general form of one multivariate asset’s conditional
variance–covariance matrix expressed in terms of conditional variances of the compounding assets and
of their principal components. This would allow the estimation of the volatility of one multivariate
asset through estimations of the volatility of principal components using day, intraday, and night
volatility information. Then, by reducing the n-multivariate to a n− k stock dimension (n and k positive
integers), we could estimate the new models and assess their one-day-ahead forecasting performance.
Constructing models that use volatility information from the previous two days and two nights may
further improve the modeling of volatility, as we noted by inspecting the results for the current bivariate
form of Realized GARCH (2,2). Disseminating among the stocks according to their underlying volatility
features may provide a better method of more consistently modeling their volatility patterns.

Integration of volatility estimates of highly interlinked markets that are open during the closing
time of the reference market is another suggestion for further research. For example, proposing models
for the U.S. market that estimate day volatility using night volatility estimates from the Asian markets
open during the non-trading times of the U.S. market would allow for integration in such models of
systemic risk and financial contagion related elements, with likely benefits for volatility estimation
and forecasting.
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Appendix A. Log-Likelihood Function for the Bivariate Models

The data are bivariate vectors compounded of two univariate vectors that refer to uncorrelated
sets of information (we considered first that night volatility was uncorrelated with day volatility):(

r•t
r
◦

t

)
|Ft−1 ∼ N(0,

(
h•t 0
0 h

◦

t

)
). Accordingly, the random vector

(
r•t
r
◦

t

)
depends solely on the

information set available at time t − 1, and has a normal distribution with
(

0
0

)
mean and a

variance equal to the variance–covariance matrix
(

h•t 0
0 h

◦

t

)
. The latter is equivalent to var

(
r
◦

t

)
= σ

◦

t ,

var
(
r•t

)
= h•t and cov

(
r
◦

t , r•t
)
= 0. The total volatility is given as rt = r

◦

t + r•t . Theory states that

when a random vector (such as
(

r•t
r
◦

t

)
) is normally distributed, then its components are also

normal.
(

r•t
r
◦

t

)
|Ft−1 ∼ N(0,

(
h•t 0
0 h

◦

t

)
) shows that r•t |Ft−1 , ∼ N

(
0, h•t

)
and r

◦

t |Ft−1 ∼ N
(
0, h

◦

t

)
.

Since a sum of two normal variables is a normal variable with the average equal to the arithmetic
sum of the two component averages, rt|Ft−1 ∼ N

(
0, h•t + h

◦

t

)
, then the density function of rt|Ft−1

has the form of a normal variable, that is, f (rt) = 1√
σ∗t
√

2π
e

r2
t

2h∗t , where h∗t = h•t + h
◦

t is the

variance of rt. Since n observations of t = 1, . . . , n are made, the likelihood function is the
r1

. . .
rn

 vector’s density, and r1, . . . , rn are independent of each other, so the likelihood function

is l(rt) =
∏n

t=1 f (rt) =
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t=1
1√
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expression and using the logarithm properties, the log-likelihood function of the total returns rt will

become log l(rt) = log(
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) + log(

(∏n
t=1

1√
h∗t

)
) − 1

2
∑n

t=1
r2
t

h∗t
= −n

2 log(2π) − 1
2
∑n

t=1 log
(
h∗t

)
−

1
2
∑n

t=1
r2
t

h∗t
= − 1

2
∑n

t=1

[
log(2π) + log

(
h∗t

)
+

r2
t

h∗t

]
.

If we considered a more complete model with a non-null correlation between r
◦

t and
r•t (meaning that night volatility influences day volatility), that is, corr

(
r
◦

t , r•t
)

= ρ , 0, the
formulation of the log-likelihood function slightly changes. Observe first that ρ does not depend
on t, that is, the correlation is not time dependent. Then, the covariance will be

(
r
◦

t , r•t
)
=
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(
r
◦
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)√
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(
r•t

)
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√
h•t h
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t . This means that in the new model (with a non-null correlation),
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). The conditional variance of rt, var(rt|Ft−1 ),

is var(rt|Ft−1 ) = var
(
r•t |Ft−1

)
+ var

(
r
◦

t |Ft−1
)
+ 2cov

(
r•t |Ft−1 , r

◦

t |Ft−1
)
= h•t + h

◦

t + 2ρ
√

h•t h
◦

t , that is,

h∗t = h•t + h
◦

t + 2ρ
√

h•t h
◦

t . The log-likelihood function of rt = r•t + r
◦

t will be the same as the one
iterated for the null correlation case, the only difference being that the variance encloses the correlation

term h∗t = h•t + h
◦

t + 2ρ
√

h•t h
◦

t .
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However, we want to consider the log-likelihood function of the bivariate vector
(

r•t
r
◦

t

)
and

not that of the univariate vector rt = r•t + r
◦

t . As such, to define the new log-likelihood function,

we considered the density function of the bi-dimensional normal
(

r•t
r
◦

t

)
. The general form of a

p-dimensional normal vector Np(µ, Σ) (a matrix with µ vector average and Σ variance–covariance

matrix) takes the form f (x) = 1
(
√

2π)
p

1√
det(Σ)

e−
1
2 (x−µ)

′Σ−1(x−µ), where x is any vector for which the density

function has been calculated with p arguments, det(Σ) is the determinant of the variance–covariance
matrix Σ, and (x− µ)′Σ−1(x− µ) is the matrix product between the transpose of the (x− µ) vector,
the inverse of matrix Σ, and the (x− µ) vector. As such, with p = 2 for the particular case of a

bi-dimensional vector
(

r•t
r
◦

t

)
, the density function is f

(
r•t , r

◦

t

)
= 1

(
√

2π)
2

1√
det(Σ)

e
−

1
2 (r
•

t ,r
◦

t )Σ
−1(

r•t
r
◦

t
)

in

which µ = 0 and Σ =

 h•t ρ
√

h•t h
◦

t

ρ
√

h•t h
◦

t h
◦

t

. Since det(Σ) = h•t h
◦

t − ρ
2h•t h

◦

t = h•t h
◦

t

(
1− ρ2

)
, then its log

form is log(det(Σ)) = log(h•t ) + log(h
◦

t ) + log
(
1− ρ2

)
. The inverse matrix of the variance–covariance

matrix is Σ−1 = 1
h•t h

◦

t (1−ρ
2)

 h•t −ρ
√

h•t h
◦

t

−ρ
√

h•t h
◦

t h
◦

t

. As such, the product − 1
2

(
r•t , r

◦

t

)
Σ−1

(
r•t
r
◦

t

)
becomes

−
1
2

(
r•t , r

◦

t

)
Σ−1

(
r•t
r
◦

t

)
= −

1
2

r•t
2h
◦

t +r
◦

t
2h•t −2r•t r

◦

t ρ
√

h•t h
◦

t

h•t h
◦

t (1−ρ
2)

. Thus, the log-likelihood function log l(r•t , r
◦

t ) is

obtained by multiplying the functions f
(
r•t , r

◦

t

)
for the t = 1, . . . , n, and by taking the log of the resulting

product log l(r•t , r
◦

t ) = −
1
2
∑n

t=1

2 log(2π) + log
(
1− ρ2

)
+ log(h•t ) + log(h

◦

t ) +
r•t

2h
◦

t +r
◦

t
2h•t −2r•t r

◦

t ρ
√

h•t h
◦

t

h•t h
◦

t (1−ρ
2)

.

By performing some simple iterations in the expression above, we
obtained the final form of the bivariate log-likelihood function as log l(r•t , r

◦

t ) =

−
1
2
∑n

t=1

2 log(2π) + log
(
1− ρ2

)
+ log(h•t ) + log(h

◦

t ) +
r•t

2/h•t +r
◦

t
2/h

◦

t
(1−ρ2)

−
2ρ

(1−ρ2)

r•t r
◦

t√
h•t h

◦

t

.

Appendix B

Table A1. Maximized log-likelihood functions in univariate and bivariate estimations; in-sample.

Stock
EGARCH EGARCH-X Realized EGARCH Realized GARCH Realized GARCH (2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Biv (red) Univ Biv

AIG −1721.9 −2900.0 −1710.1 −2821.5 −1711.8 −2845.7 −1709.1 −2874.4 −2875.4 −1701.3 −2849.9
AXP −1668.6 −2742.6 −1637.8 −2790.4 −1645.5 −2842.3 −1642.7 −2855.3 −2857.5 −1638.3 −2904.8
BAC −1506.6 −2499.9 −1473.0 −2438.8 −1475.5 −2437.7 −1478.5 −2443.0 −2439.7 −1471.5 −2437.1
CSCO −1722.4 −2886.2 −1709.7 −2820.9 −1712.9 −2841.1 −1711.7 −2876.9 −2876.1 −1702.1 −2845.1
F −1673.5 −2746.3 −1644.2 −2791.8 −1645.9 −2841.5 −1644.1 −2853.8 −2855.2 −1642.8 −2898.9
GE −1504.9 −2498.1 −1474.2 −2433.2 −1475.8 −2442.8 −1477.9 −2446.1 −2440.1 −1467.1 −2440.7
INTC −1505.4 −2497.5 −1471.4 −2434.7 −1478.1 −2439.8 −1475.5 −2445.9 −2439.8 −1468.1 −2437.7
JPM −1658.1 −2750.6 −1616.4 −2699.0 −1619.6 −2702.0 −1625.9 −2714.3 −2703.1 −1615.4 −2683.7
MSFT −1668.0 −2743.3 −1639.9 −2792.0 −1639.3 −2840.6 −1642.8 −2851.0 −2855.3 −1639.9 −2903.1
T −1507.1 −2497.5 −1470.9 −2434.4 −1477.5 −2438.6 −1478.2 −2442.1 −2440.0 −1471.3 −2439.3
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Table A2. Maximized log-likelihood functions in univariate and bivariate estimations; out-of-sample.

Stock
EGARCH EGARCH-X Realized EGARCH Realized GARCH Realized GARCH (2,2)

Univ Biv Univ Biv Univ Biv Univ Biv (com) Biv (red) Univ Biv

AIG −399.5 −1032.1 −394.2 −795.4 −387.7 −749.6 −372.5 −777.9 −774.4 −383.6 −736.9
AXP −313.3 −607.7 −309.6 −565.7 −310.7 −576.5 −305.9 −561.3 −561.8 −308.4 −573.1
BAC −344.6 −654.0 −341.9 −687.9 −352.0 −671.4 −337.0 −673.7 −676.2 −337.6 −670.0
CSCO −407.3 −1033.4 −386.0 −790.5 −392.5 −752.5 −376.0 −770.1 −777.9 −372.5 −732.2
F −308.9 −602.1 −308.0 −560.3 −307.6 −566.1 −305.6 −573.0 −563.7 −307.7 −570.1
GE −348.8 −657.6 −339.0 −687.8 −353.7 −666.6 −348.5 −678.1 −672.0 −339.1 −672.9
INTC −347.5 −659.5 −345.9 −681.7 −351.3 −678.7 −336.2 −674.3 −674.8 −340.5 −676.8
JPM −330.9 −607.9 −326.1 −589.3 −324.1 −582.2 −316.0 −579.1 −573.1 −323.2 −584.8
MSFT −403.5 −1030.5 −393.2 −787.9 −389.4 −745.4 −368.9 −772.7 −780.4 −386.3 −733.3
T −315.0 −603.8 −305.2 −568.1 −303.8 −569.8 −301.4 −570.6 −572.1 −304.2 −570.6
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