Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243713 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Issue:] 1 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 74-79
Publisher: 
Elsevier, Amsterdam
Abstract: 
New processes that may reduce the net carbon emissions and contribute to a more circular economy are needed. Bi-reforming of methane (BRM) is a promising method for syngas production, with a hydrogen-to-carbon monoxide ratio of two in the reaction products, relevant for example when the purpose is methanol synthesis. In this work, reaction studies were carried out over a nickel-based catalyst varying the temperature (798-1123 K). Three main temperature zones have been identified; a low temperature zone where the conversion of carbon dioxide is almost null, a middle temperature range where steam reforming of methane (SRM) is dominant while the conversion of carbon dioxide via dry reforming of methane (DRM) is low, and finally a high temperature range where DRM becomes more significant. The results show that syngas can be successfully produced using this process. For the range of operating conditions studied, the carbon dioxide and methane conversions increase with temperature, reaching 40% and 100%, respectively at the largest temperature studied. However, the production of syngas in a molar ratio of 1:2 for CO-to-H2 requires the use of high temperatures. Most probably the nickel agglomerates on top of the Ú-alumina support are responsible for the poor catalyst performance.
Subjects: 
Bi-reforming of methane
BRM
CO ennoblement
Methanol
Syngas production
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size
751.06 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.