Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/238781 
Autor:innen: 
Erscheinungsjahr: 
2009
Quellenangabe: 
[Journal:] International Econometric Review (IER) [ISSN:] 1308-8815 [Volume:] 1 [Issue:] 1 [Publisher:] Econometric Research Association (ERA) [Place:] Ankara [Year:] 2009 [Pages:] 18-27
Verlag: 
Econometric Research Association (ERA), Ankara
Zusammenfassung: 
David Freedman's critique of causal modeling in the social and biomedical sciences was fundamental. In his view, the enterprise was misguided, and there was no technical fix. Far too often, there was a disconnect between what the statistical methods required and the substantive information that could be brought to bear. In this paper, I briefly consider some alternatives to causal modeling assuming that David Freedman's perspective on modeling is correct. In addition to randomized experiments and strong quasi-experiments, I discuss multivariate statistical analysis, exploratory data analysis, dynamic graphics, machine learning and knowledge discovery.
Schlagwörter: 
Causal Modeling
Regression Analysis
Exploratory Data Analysis
Data Science
JEL: 
C81
C50
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.