
Berk, Richard

Article

What Now? Some Brief Reflections on Model-Free
Data Analysis

International Econometric Review (IER)

Provided in Cooperation with:
Econometric Research Association (ERA), Ankara

Suggested Citation: Berk, Richard (2009) : What Now? Some Brief Reflections on Model-
Free Data Analysis, International Econometric Review (IER), ISSN 1308-8815, Econometric
Research Association (ERA), Ankara, Vol. 1, Iss. 1, pp. 18-27

This Version is available at:
https://hdl.handle.net/10419/238781

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/238781
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Berk-What Now? Some Brief Reflections on Model-Free Data Analysis 

18 

 

What Now? Some Brief Reflections on Model-Free Data Analysis


 

 

 

Richard Berk 

 

Department of Statistics 

Department of Criminology 

University of Pennsylvania 

 

ABSTRACT 

 
David Freedman’s critique of causal modeling in the social and biomedical sciences was 

fundamental. In his view, the enterprise was misguided, and there was no technical fix. 

Far too often, there was a disconnect between what the statistical methods required and 

the substantive information that could be brought to bear. In this paper, I briefly consider 

some alternatives to causal modeling assuming that David Freedman’s perspective on 

modeling is correct. In addition to randomized experiments and strong quasi-experiments, 

I discuss multivariate statistical analysis, exploratory data analysis, dynamic graphics, 

machine learning and knowledge discovery. 
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1. INTRODUCTION 

 

David Freedman began his professional career as a probabilist and mathematical statistician. 

He spent most of his career in the Department of Statistics at the University of California, 

Berkeley. His theoretical work was extremely broad, including important contributions to 

such topics as Martingale inequalities, Markov processes, de Finettis theorem, consistency of 

Bayes estimates, sampling, and the bootstrap. For these contributions, he was justly 

recognized. He was an elected fellow of Institute of Mathematical Statistics and of the 

American Statistical Association and was an elected member of the American Academy of 

Arts and Sciences. In 2003, he received John J. Carty Award for the Advancement of Science 

from the National Academy of Sciences “for his profound contributions to the theory and 

practice of statistics, including rigorous foundations for Bayesian inference and trenchant 

analysis of census adjustment.”  

 

The reference to census adjustment is telling. It highlights the kind of work for which David 

Freedman is probably most widely know, at least outside of discipline of statistics. Towards 

the middle of his professional career, teaching of statistics at various levels led him to 

introduce a variety of real-world applications into his courses. The more he examined such 

applications, the more concerned he became. In his view, there was commonly a 

demonstrable disconnect between what the statistical tools required and what applied 

researchers provided. The result was assume-and-proceed statistics presented as science.  

 

But the problems were much deeper. The statisticians and econometricians responsible for the 

tools that were so often misapplied were frequently guilty of selling defective goods. 

                                                 


 Thanks go to Jasjeet Sekhon for helpful comments on an earlier draft of this paper. 
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Performance claims were unproved, or proved with convenient but unreasonable assumptions, 

or proved incorrectly. Moreover, such tools were often introduced into the research 

community with a hype usually associated with Hollywood productions or with an academic 

puffery that was at least unseemly. These overlays were as offensive to Professor Freedman 

as the shoddy work. The day before he died, when he knew he had not long to live, he urged 

his friends to “keep after the rascals.” 

 

I began working with David Freedman over a decade ago. We collaborated on a number of 

projects through which I received a welcomed and ongoing tutorial in statistics. I think I 

understand his perspective and much of his applied work. I do not think I can do it justice. In 

broad, summary form, his critiques of statistical practice can seem like old news. Stated that 

way, many of his concerns are old news. Much of David Freedman's impact is in the fine 

details of how, in his words, “the train jumped the tracks” (e.g., Freedman, 2008ab; Freedman 

and Berk, 2008) and in his back and forth with individuals who tried to deflect or dilute his 

critiques (e.g., Freedman and Humphries, 1999; Freedman, 2004). Equally important were his 

efforts to show the ways in which applied statistical research had been severely compromised 

in a wide variety of concrete settings. His concerns about statistical adjustments to the census 

were perhaps the best example (Brown et al., 2000; Freedman et al., 2001; Freedman and 

Wachter, 2001; 2003; Wachter and Freedman, 1996; 2000a; 2000b).  

 

I think it is most appropriate to let David Freedman speak for himself in his past writings. 

Any summary that I could write risks trivializing his thinking. Rather, I will offer some ideas 

about where one might go from here if the core of his writings is accepted.  

 

2. WHERE DO WE GO FROM HERE? 

 

A model can be seen as a quantitative theory of how the data on hand were generated. A 

causal model is special case that conveys how the conditional distribution of a response 

variable will change when one or more causal variables are manipulated. “Casual parameters” 

contain this information (Heckman, 2000: 52-53). 

 

Imagine a world of applied statistics and applied econometrics in which causal modeling was 

only initiated when one could write down a nearly right model of how the data were 

generated. That is, imagine one where we are able to do what the standard statistics textbooks 

require. Some very light tuning of the model might be allowed, but the main tasks would be 

estimating the values of some interesting parameters and characterizing the impact of 

uncertainty on those estimates. I suspect that for the social and biomedical sciences, such a 

world is many years in the future, but for nearly-right models, many of Freedman's applied 

concerns evaporate
1
. How do we get to such a world? Or, if we don't want to get there, or do 

not believe it is possible to get there, what are the alternatives? 

 

2.1. Experiments and Quasi-Experiments  

  

One alternative to or precursor for conventional causal modeling has been around at least 

since the 1960s and needs little discussion: randomized field experiments. Although not the 

“gold standard” some claim   there is no gold standard   randomized field experiments can be 

very powerful if causal inference is the primary concern (Berk, 2005). And the analysis of 

such experiments can be and should be largely model-free (Freedman, 2006).  

                                                 
1
 Some will no doubt claim that we are already there. They need to read and digest Freedman's work (e.g., 

Freedman, 2005) and those of a large number of skeptics Freedman cites. 
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Strong quasi-experiments, such as those based on a regression-discontinuity design, have also 

been used since the 1960s. They fall between randomized experiments and observational 

studies and can sometimes produce credible casual inferences (e.g., Imbens and Lemieux, 

2008). They also do not need to be discussed here. They too can be and should be analyzed in 

a largely model-free fashion (Imbens, 2004; Rubin, 2008).  

 

Some might argue that randomized experiments and strong quasi-experiments are ends in 

themselves. They are not a step toward nearly-right models. This is not the venue in which 

examine the issues. Suffice it say, there are good arguments on both sides.  

 

What does one do if there are no nearly-right models for the problem at hand, and randomized 

experiments or strong quasi-experiments are not feasible or are premature? Perhaps then, the 

pursuit of cause-and-effect needs to postponed. Perhaps “mere” description, which currently 

can be undertaken in many different ways, is then an appropriate alternative. 

 

2.2. Multivariate Statistical Analysis  

 

There was a time when multivariate statistical analysis was central in many of the social and 

biomedical sciences (Anderson, 1958). Put somewhat too simply, the goal was to find 

systematic patterns in the data without much concern about cause and effect. Statistical 

inference was common, often capitalizing on the multivariate normal distribution. Thus, 

models played a central role, but the models were usually not causal. Classification tools such 

as discriminant function analysis were popular. Data reduction tools such as factor analysis, 

clustering, canonical correlation and multidimensional scaling were also common.  

 

Over the past two decades the underlying machinery of such procedures has become 

increasingly sophisticated so that the field is now populated with such tools as multiple 

correspondence analysis, categorical and nonlinear principal components analysis, nonlinear 

generalized canonical correlation analysis, and projection pursuit (Gifi, 1990). Description 

remains primary. But for some flavors of multivariate statistical analysis, statistical inference 

and the models it requires are given far less prominence. 

 

A technique is defined, more or less, as a tool into which you feed data of a 

particular type and format, and which then reproduces output of a particular type 

and format. This very instrumental interpretation of data analysis is contrasted, in 

many places, with the model-oriented approach of classical statistics. Models do 

have a place in Gifi's philosophy: not as tentative approximations to the truth, but 

as devices to sharpen and standardize data analytic techniques… (Gifi, 1990: v)
2
. 

 

Loosely translated, Gifi's position is that multivariate statistical analysis should be about 

organizing, summarizing, and displaying data to aide in the search for structure. The 

enterprise is inductive, significantly because deductive approaches depend far too heavily on 

assumed truths that are not demonstrably true. As such, multivariate statistical analysis has 

much in common with exploratory data analysis to which we turn next. 

 

 

                                                 
2
 The author A. Gifi is actually Jan de Leeuw, Distinguished Professor of Statistics at UCLA. The statement just 

quoted is rather gentle compared to his current views. Of late, he sometimes speaks of models as “codified 

prejudice.” (personal communication). 
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2.3. Exploratory Data Analysis  

  

Exploratory data analysis (EDA) has evolved from rather different traditions than multivariate 

statistical analysis, but the overlap can be striking. Persi Diaconis observes that  

 

Exploratory data analysis (EDA) seeks to reveal structure, or simple description. 

We look at numbers or graphs and try to find patterns. We pursue leads suggested 

by background information, imagination, patterns perceived, and experience with 

other data analyses (Diaconis, 1985: 1) 

 

Unlike multivariate statistics, EDA has never relied heavily on models of any sort, and there 

has been greater emphasis on clever, low tech approaches and visualization methods. John 

Tukey, the statistician most associated with EDA, says it this way.  

 

This book is about exploratory data analysis, about looking at data to see what it 

seems to say. It concentrates on simple arithmetic and easy-to-draw pictures. It 

regards whatever appearances we have recognized as partial descriptions, and 

tries to look beneath them for new insights. Its concern is with appearance, not 

confirmation (Tukey, 1977: v) 

 

The problem with using models is not that they are too often fatuous. The problem is that they 

are too often premature. The descriptive goals of EDA are seen as necessary prerequisites to 

the development and use of models, often causal models. EDA is in part offered as a way to 

help identify problems in the data that could undermine model-based approaches and formal 

statistical tests; diagnostics are an important component of the EDA tool kit (Dasu and 

Johnson, 2003). Finally, the walls around EDA are very permeable so that some kinds of 

EDA are actually efforts to make traditional model-based procedure more robust (Hoaglin et 

al., 2000; 2006). 

 

2.4. Dynamic Graphics  

 

A third source of descriptive tools and procedures is found in the recent developments around 

computer driven visualization and dynamic graphics. This work builds substantially on earlier 

graphical approaches to data (Cleveland, 1993), EDA and multivariate statistics so that all 

three traditions are sometimes combined in the same procedure. For example, drawing on and 

dramatically extending some of the ideas from principal component analysis, there are a 

variety of projection methods that can reduce the dimensionality of a given data set. Linear 

combinations of variables are constructed in response to a variety of constraints and loss 

functions. Orthogonality, for instance, may or may not be imposed on the linear 

combinations, and there are loss functions that can combine variables so that clusters of 

observations in the projection space are revealed (Cook et al, 2007: 26-34). One is not limited 

to combining variables that are highly correlated.  

 

But there is more. There is virtually a limitless number of projections one can construct from 

a given data set, and one is not formally constrained to projections in three dimensions or less. 

A means must be found to translate the information contained in such projections into a 

digestible form. Recent developments in computer technology can help.  

 

Unlike the passive paper medium, computers allow us to manipulate pictures, to 

pull and push their content in continuous motion like a moving video camera, or 
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to poke at objects in one picture and see them light up in other pictures. This book 

features many illustrations of the power of these linking technologies. The diligent 

reader may come away ``seeing'' high-dimensional data spaces! (Cook et al, 

2007:3) 

 

In short, increasing computing power and new algorithms can be harnessed to provide 

instructive visualizations of data analysis procedure combining many of the strengths of 

multivariate statistical analysis and exploratory data analysis. A key is being able to interact 

in real time with visual summaries of the data. An interesting byproduct is an evolving skill in 

how one looks at and thinks about high dimensional data.  

 

2.5. Machine Learning  

 

A fourth source of descriptive approaches is very recent developments in machine learning, 

also called statistical learning (Bishop, 2006; Berk, 2008; Hastie et al., 2009). It has its roots 

in computer science as well as statistics. Superficially, one can view much of this work as 

function estimation. One assumes something like Y = f(X)+, and the goal is to determine the 

f(X). As such, it has the same look and feel as nonparametric or semiparametric regression 

that have been popular in some circles for well over a decade. But that neglects several key 

points. 

 

1. To estimate the f(X), one needs X. All of the usual omitted variables problems 

reappear. One also needs to make the usual sorts of regression assumptions about . 
And there are rarely any claims that the f(X) has a causal interpretation to begin with. 

In practice, therefore, these procedures are less about function estimation and more 

about description.  

2. The loss functions can be highly unconventional. Under support vector machines, for 

example, the loss function for binary outcomes is shaped much like a hockey stick 

(Berk, 2008: 314).  

3. There is nothing in the usual output requiring a causal story. For example, the 

“importance” of predictors is often represented as contributions to forecasting skill. A 

variable that forecasts well may or may not have any causal connection to the 

response.  

4. Statistical inference is rarely employed and is likely to be fundamentally misguided in 

any case (Leeb and Pötscher, 2005; 2006; 2008).  

5. The algorithms are often novel. In boosting, for instance, there can be thousands of 

passes through the data. After each pass, the data are reweighted so that observations 

that are fitted less well are given greater weight before fitting procedure is reapplied. 

The final collection of fitted values is a weighted average of each set of earlier fitted 

values, with these weights a function of the quality of the fit for that set. Also, there is 

no search for convergence in the usual sense (Berk, 2008: 258-259). 

6. In addition to “supervised learning” for which there is a response variable, there is 

“unsupervised” learning in which there is no response variable. Thus, 

machine/statistical learning applies much the same approach whether in a setting that 

looks like regression or in a setting that looks like clustering.  
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To summarize, machine/statistical learning in practice can be seen as a form of data 

exploration in which description is the primary goal. Many of the procedures work well on 

very high dimensional data, and some work well even with there are more predictors than 

observations (e.g., random forests). They are also often well suited for the analysis of 

enormous data sets with hundreds of thousands of observations. For example, parallelization 

is often straightforward. 

 

2.6. Knowledge Discovery 

  

“Knowledge discovery” is really just a way some computer scientists and applied 

mathematicians summarize the series of research processes that are at least implicit in much 

empirical science. The enterprise begins with developing substantive expertise in the research 

area, proceeds through data collection and cleaning, then to data analysis, and finally to 

interpretation of the results. For purposes of this discussion, the key feature of knowledge 

discovery is the data analysis, sometimes broadly characterized as “data mining”, which is the 

search for patterns in the data. Thus, data mining includes virtually any quantitative data 

analysis having a significant inductive component (Maimon and Rokach, 2005). Each of the 

descriptive approaches just described qualify.  

 

There are many additional inductive approaches from computer science having a distinctive 

style. Perhaps the most well known are various query methods used with large, complex data 

sets. For example, how might one discover and then characterize the collect of consumer 

goods that certain kinds of individuals purchase (Höppner, 2005; Boulicaut and Masson, 

2005)? Should one define the collection of goods through the estimated marginal probability 

of each item being purchased. And if so, what might be a loss function to determine 

membership? Or should the estimated joint probability of all possible bundles of purchased 

items use used? And if so, how best does one efficiently search through enormous data bases 

to consider all possible bundles? Query methods are essentially about how to pose clear, well-

bounded questions to a data set and then about algorithms for finding the answers.  

 

More provocative is very recent work in which the application of computer algorithms to data 

on physical system apparently finds not just regularities, but regularities that are essentially 

rediscoveries of known physical laws. In a recent issue of Science, the authors explain: 

 

Our goal is to find natural relations where they exist, with minimal restrictions on 

their analytical form (i.e., free-form). Many methods exist for modeling scientific 

data: Some use fixed-form parametric models derived from expert knowledge, 

and others use numerical models (such as neural networks) aimed at prediction. 

Still others have explored restricted model spaces using greedy monomial search. 

Alternatively, we seek the principal unconstrained analytical expression that 

explains symbolically precise conserved relations, thus helping distill data into 

scientific knowledge (Schmidt and Lipdson, 2009:81). 

 

The algorithm proceeds in six steps (Schmidt and Lipdson, 2009: 82). 

 

1. Collect experimental data. 

2. Numerically calculate partial derivatives for every pair of variables. 
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3. Generate candidate symbolic functions. They are random at first. Subsequently, small 

variations on the best equations are selected (in step 5). 

4. Derive the symbolic partial derivatives for each pair of variables implied by each 

candidate equation.  

5. Compare the derived partial derivatives to the corresponding numerical partial 

derivatives and select the best equations. 

6. When the fit between the two sets of partial derivatives is sufficiently good, return the 

most parsimonious equations.  

In applications to date, this algorithm correctly rediscovers several non-trival physical laws. 

Successes with somewhat similar implications are reported in the same issue of Science by 

other authors working on biological systems. The intent is to automate routine science so that 

researchers can be released to undertake more creative and challenging tasks. 

 

A natural extension of the trend to ever-greater computer involvement in science 

is the concept of a robot scientist. This is a physically implemented laboratory 

automation system that exploits techniques from the field of artificial intelligence 

to execute cycles of scientific experimentation. A robot scientist automatically 

originates hypotheses to explain observations, devises experiments to test these 

hypotheses, physically runs the experiments by using laboratory robotics, 

interprets the results, and then repeats the cycle (King et al, 2009: 85) 

 

With these developments and more to come, one has to wonder if we are falling into a trap 

somewhat like the one that David Freedman identified so well. Are we being seduced by 

technological advances that can undermine the very activities that good science requires? 

 

3. CONCLUSIONS 

  

David Freedman believed that significant portions of the social and biomedical sciences had 

been hijacked by causal modeling tools that too many researchers did not understand and that 

were in many cases misrepresented to begin with. The solution was not better modeling tools   

that response had failed too many times already   but a fundamental reconsideration of the 

enterprise. That reconsideration would be based heavily on looking back to successful social 

and biomedical scientific practice in the past. That past depended on many different kinds of 

data, both qualitative and quantitative, a gradual accumulation rich descriptive material, 

opportunistic exploitation of natural variation and natural experiments, true experiments and 

strong quasi-experiments where possible, and a thoughtful integration of the information 

obtained in a context of real substantive expertise. At the same time, he was not hostile to 

technological advances that could further the enterprise. Over the years, he integrated many 

into his research. In that spirit, a case can be made for continuing the support of randomized 

experiments and strong quasi-experiments, and for resurrecting scientific description as one 

essential element in the social and biomedical sciences, aided where possible by recent 

technical developments. 
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