Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/230568
Authors: 
MacKinnon, James G.
Nielsen, Morten Ørregaard
Webb, Matthew
Year of Publication: 
2019
Series/Report no.: 
Queen’s Economics Department Working Paper No. 1415
Abstract: 
We study two cluster-robust variance estimators (CRVEs) for regression models with clustering in two dimensions and give conditions under which t-statistics based on each of them yield asymptotically valid inferences. In particular, one of the CRVEs requires stronger assumptions about the nature of the intra-cluster correlations. We then propose several wild bootstrap procedures and state conditions under which they are asymptotically valid for each type of t-statistic. Extensive simulations suggest that using certain bootstrap procedures with one of the t-statistics generally performs very well. An empirical example confirms that bootstrap inferences can differ substantially from conventional ones.
Subjects: 
CRVE
grouped data
clustered data
cluster-robust variance estimator
two-way clustering
robust inference
wild cluster bootstrap
JEL: 
C15
C21
C23
Document Type: 
Working Paper

Files in This Item:
File
Size
816.35 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.