Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/230057 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Journal of Applied Econometrics [ISSN:] 1099-1255 [Volume:] 35 [Issue:] 1 [Publisher:] Wiley [Place:] Hoboken, NJ [Year:] 2020 [Pages:] 19-45
Verlag: 
Wiley, Hoboken, NJ
Zusammenfassung: 
We examine the properties and forecast performance of multiplicative volatility specifications that belong to the class of generalized autoregressive conditional heteroskedasticity–mixed-data sampling (GARCH-MIDAS) models suggested in Engle, Ghysels, and Sohn (Review of Economics and Statistics, 2013, 95, 776–797). In those models volatility is decomposed into a short-term GARCH component and a long-term component that is driven by an explanatory variable. We derive the kurtosis of returns, the autocorrelation function of squared returns, and the R2 of a Mincer–Zarnowitz regression and evaluate the QMLE and forecast performance of these models in a Monte Carlo simulation. For S&P 500 data, we compare the forecast performance of GARCH-MIDAS models with a wide range of competitor models such as HAR (heterogeneous autoregression), realized GARCH, HEAVY (high-frequency-based volatility) and Markov-switching GARCH. Our results show that the GARCH-MIDAS based on housing starts as an explanatory variable significantly outperforms all competitor models at forecast horizons of 2 and 3 months ahead.
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe
2.72 MB





Publikationen in EconStor sind urheberrechtlich geschützt.