Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/221468
Authors: 
Merlin, Vincent R.
Saari, Donald G.
Year of Publication: 
1994
Series/Report no.: 
Discussion Paper No. 1112
Abstract: 
An important issue for economics and the decision sciences is to understand why allocation and decision procedures are plagued by manipulative and paradoxical behavior once there are n>3 or n=3 alternatives. Valuable insight is obtained by exploiting the relative simplicity of the widely used Copeland method (CM). By use of a geometric approach, we characterize all CM manipulation, monotonicity, consistency, and involvement properties while identifying which profiles are susceptible to these difficulties. For instance, we show that for n=3 candidates that the CM reduces the negative aspects of the Gibbard-Satterthwaite theorem.
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.