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COPELAND METHOD II: MANIPULATION,
MONOTONICITY, AND PARADOXES

VINCENT R. MERLIN AxD DoNALD G. SAARI

Department of Mathematics, Northwestern University

ABSTRACT. An nnportant issue for economics aid the decision sciences 1s to un-
derstand why allocation and decision procedures are plagued by manipulative and
paradoxical behavior once there are n > 3 alternatives. Valuable insight s obtained
bv exploiting the relative simplicity of the widely used Copeland method (M), By
use of a geometric approach. we characterize all CN manipulation. menotonicity.
consistency. and involverent properties while identifving which profiles are suscep-
tible 1o these difficulties. For instauce, we show for n = 3 candidates that the CM
recluces the negative aspects of the Gibbard-Satterthwaite theorem.

This paper continues our investigation into the properties and flaws of the widely
used Copeland's method (CA]). The purpose of this decision procedure is to extend
the majority {or Condorcet [Cnl) rule where an alternative (a candidate. a sport’s
reani. ete.} is selected should it be preferred by a majority of the voters whenever it
is compared with any other alrernarive. When a majority winner does not exist. the
CA [C] provides a natural choice that is compatible with Condorcet’s approach.
Wirhi the CML the winning alternative from each pairwise contest receives one
point, the losing candidate receives zero points. and. with a tie. each receives half
a poinr. The sum of assigned points defines a candidate’s CM score where the
scores determuine the CA ranking of the candidates. (To simplify proofs, we use
the equivalent weights (1.0, —1).) In spite of its wide use (e.g.. this procedure is
commonly used ro rank sports teams), surprisingly little is known about ir.

O first paper [SM . examining single profile (i.c.. a listing of the voters” prefer-
ences) CA properties. contrasted the CN rankings with those of positional proce-
chures. deseribed how the CA rankings can vary as candidates enter or drop out of
the election. and compared the “narural” and CAI rankings associated with certain
profiles. In this paper. we discuss those multiple profile issues that arise when CAI
onrcomes for two or more profiles are compared. As examples. while the first profile
pi1 could represent the current. sincere preferences of the voters. the second profile
p: could model sitnations where some vorers now decide to vore for the pi-CM win-
ner. or they vote strategically to try to alter the ourcome. or they forget to vorte.

Key words and phrases. Copeland, mouotonicity, voting. congistency. strategic voling. manip-
ulation, voting paradoxes.
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The goal is to understand how the two outcomes are related.  As such, mulriple
profile issues include not only the currently faddish topic of strategic voring, but
also the traditional normarive themes that question what should happen in a fixed
population when the preferences change or new voters enter. The first normative
concern leads to all of the monotonicity-manipulation issues: the second captures
rhe consistencey conditions.

These multiple profile topics plague all decision and economic procedures. Con-
sequently. the relatively simple structure and wide use of CAM makes it a valued
system to be analyzed to undersrand, illustrate, identify, and explain the general
source of these difficulties. Indeed. the simpler CM geometry even allows the profile
space to be separated into regions where unexpected and strategie beliavior ecan. or
cannot, arise.

Typically. each multiple profile theme requires speecialized methods of analysis.
so questions about monotoniciry, manipulation. effects of truncated ballors and so
forth almost always are treated as separate issues. In this paper we demonstrare
that this separated approach is conceprually misleading and unnecessary: instead.
these topies can and should be treated as special eases of one analysis. To do
50, we use a geometric approach ([S1. Chap. 4.) to unify these topies (and others
that may arise) so that eacli 1ssue can be addressed i the same manner, We
demonstrate this approach by starting with three-candidate elections so that the
geometrie techniques can be illustrated with simple figures from a common three-
dimensional cube.  After the basic approach is established. it bhecomes easy to
quickly describe the n-candidate situation in a unified manner.

Another importaut advanrage of this geometric approach involves the difficuley
of these issues that can be NP-hard [BO. BTT . Refleeting this severe complexity is
the fact that it is typical for conclusions to merely specify whether or not a proce-
dure can suffer a particular (mulriple profile) difficulry. While it is undersrandable
why these conelusions are so severely limited, the assertions are unsatisfying if only
because common sense and experience teaclies us that these are not universal prob-
lerns. For instance, surely by failing to vore. a vorer will not always be rewarded
with a betrer eleetion outcome. Surely a particular voter cannot always successfully
manipulate the clection ourcome,

Rather than being told that a procedure might suffer a problem, we really want
ro know when and where it can occur: i.e.. we wanrt to learn whether the difficulry
15 serious or Just a minor anunoyance. This requires characterizing which profiles
can. or cannot. experience these difficulties. Afrer all. only after we can specify
all profiles susceptible to various problems can we hope ro recognize which difficul-
ries can be dismissed as mere anomalies, to identify which situations should cause
worry, to understand why these problems occur. and to be able to transfer what
we learn to other allocation or decision systems. Using the geometric approach.
this identification problem 1s surprisingly casy for the CAL and. as we indicate. the
basic 1deas transfer to orher systems.

Our approach (from [S1. Chap. L) is straight-forward. Once a particular two-
profile issue is specified. we know the relationship between the profiles pp and p,.
To illustrare with manipulative behavior, if ¢ is the p-CM winner. then all voters
who have her top-ranked are content. Othier voters. however, may vote strategically
to try to eleet a personally more preferred candidate. So. py is found by assuming
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that the strategic voters vote in an optimal mavner. Thus, once we know py. we
also know who might vote strategically and how they should do 1t Similarly. o
determine what could happen when a voter forgets to vote, py 1s defined from p
by omitting this voter. Indeed. for a mndriple profile concern involving changes in
an original profile p;: p» is defined by the change.

After defining the profile change, we need to discover wherher it affecers the
outcome, It does i p; and p2 belong ro different profile sets where cacli set
consists of those profiles supporting a particular conclusion. Consequently. different
outcomes arise only if the profile change crosses the separaring boundary of these
sets, By finding all houndaries among the profile sets (which is surprisingly casy
to do for most procedures). we can characterize which profile changes cross the
boundary (i.e.. which multiple profile concerns can oceur) and identify where rhis
happens (i.e.. we can identify all chioices for py).

Intuitively. this approacl is the same as shooting a warer pistol. The nozzle
correspouds to py while the weakly expelled water represents p,. Whether a target
{i.c.. the separating boundary between profile sets) is hit depends on thie position
of the pistol (py) and Low it 1s aimed (ps — py) relative to the targer’s orientation.
The rarget’s orientation {at cach point) is determined by a vecror perpendicular
to the surface pointing in the desired direction of warer low. If the angle hetween
the aimed pistol and the veetor 1s less than 907, then the shor water does what we
want. However. should this angle exceed 90°. we are aiming in the wrong direction.
More ambitiously. if the pistol is held i a fixed direction (so the direction ps — py
15 fixed). by examining the normal vecrors at each point. we can establish which
portions of the surface {which profiles py) satisfy the directional requirements. As
this description is independent of dimension and choice of direction (p2 — pr ).
once we describe the geometrie boundaries of the relevant sets in profile space. this
“water pistol” approach characterizes how to analyze all multiple profile issues for
any procedure.

2. THRLEE-CANDIDATE CXN RESULTS

To mntroduce the geomerry of profiles and the basic approach. start with the
n =3 candidates {e).ea. 3}, The six ways these candidates can be linearly ranked
(without indifference) define the six vorter types

1 C| o= Co > Cy 3 Cy ™ €1 = Ca 5} Cy o™ 3 ™ )

(2.1) .
2 Lo Cy o o 4 Cy ™ Cy ™ 6 Cy ™ ] ™= O3

Iustead of lisring how many voters are of each type. it suffices to list the fraction
of voters with a particular ranking. Thus, if p; is the fraction of all vorers with a
type-g preference, j = 1000, 6. then. because the sum of the fractions equals unity,
a profile can be identified with a point in the simplex

5
(2.2) SHG) = {{r1.. o) | >y =10, =0},

=1

Each rational point in S7{6) defines several integer profiles hecause the total number
of voters can be any common denominator for the six fractions.
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It follows from Table 2.1 that the pairwise election between ¢ and ¢s is derer-
mined by the sign of

(2.3) Tia=prtprtps —pr— Py — P

where a positive value means that over half of the voters prefer ¢, a negative value
means that ¢y wins this pairwise competition. and a zero value corresponds to a
tie. Thus. the hyperplane H? ., defined by py + p2 + p3 — py — ps — ps = 0 divides
rhie profile space into three regions: H} , is the profile set where the candidates are
pairwise tied, and cach side of H}, defines the profile ser supporting a different
candidate, (The superseript “37 denotes the number of candidates.)

As a veeror orthogonal to an hyperplane 1s determined by the coetlicients of the
defining linear equation. vector

(2.4) N}, = (1.1.1. -1, ~1. 1)
is orthogonal to H} , and points into the profile set supporting ¢;. Thus. a profile
change in this direction hielps ¢ and hurrs ¢ In o similar fashion, by using Table

2.1 to determine who would vore for whoni. the equations

Yoy =pr—pz— Py — ot s+ P

Fia =Py Ep: —Ps s T
Ny, =(l.-1.-1.-1.1.1)

3) N, = (1,1, -1. -1, -1,1)

~

(:

L

represent the remaining pairwise elecrions where 754 > 0 means that ¢ beats
ek, 6 = 0 defines the separating hyperplane Hf_k that divides the profiles o
the three profile sets for the different outcomes. and N'j'.k is the normal vector
for Hfg pointing into the profile set ensuring the ¢; pairwise vietory. Notice that
rj g = —rg; and that N:,‘ = —NZ}

Three candidates define three pairs, so all pairwise outcomes can be depicted as
points in a three-dimensional figure called the representation cube where the usual
(1.y.2) coordinates are replaced with (ry o, o 3.05,) values. As =1 <oy < 1.
start with the rhree-dimensional cube defined by these values. The acrual pairwise
cleetion ontcowmes are the cube points further restricred by —1 < o2+ g3+ a3 <
1. These inequalities, which determine the slanted sides of the representation cube
im Fig.1l. exclude values that never could arise with transitive preferences. (For
details, see {([S1. Chap. 2.5 .)

With the neutrality of CAL we can assume without loss of any generality that
¢y 1s the CN winner. So. to interpret Fig. 1. observe that ¢ is the Condorcet
winner in the region where o > 0. 231 < 0 {whicll. in standard coordinates is
the r > (.2 < 0 region). Cyelic rankings are the positive and negative orthants
where {.1'173 > 0,193 >0, 031 > 0} and {.T']_g <0, a0y < 0,137 < O} A CAI
ranking ¢y > ¢z = 3 is in the ranking region given by the orthanr 2 > 0, y > 0, 2z <
0 (1., wy0.023 > 0,003 < 0). For our purposes. ¢ is a CAl top-ranked candidare
iff the outcome is in D*(¢)  the union of the two cyelie regions, the ¢j-Condoreet
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region. specific portions of the two bounding planes for the ¢;-Condorcet region
{r1e =003 <0} {ro > 0023, = 0}, and the origin a2 = 223 = w31 = 0.
The D*( ¢, ) sets supporting the selection of other alternatives are symmetrie. Notice
that ourside of the ¢;-Condorcet region. the D*(¢)} outcomes require ¢ to share
the honor of being CA top-ranked {e.g.. in the two cyelic regions all candidates are
CAI winners).

ERN

e

Fig. 1. The representation cube for the three pairs of candidares

Because the D?*(e;) geometry is basic for what follows, it is displayed from a
more convenient perspective in Fig. 2. This figure, which 1s a 90” rotation of Fig. 1.
shows the four relevant orthants of P*(¢;)  including the two cyclic regions. (To
keep the figure simple, we ignored the slanted faces.

31
T
' positive
I orthiant
|
!
4 - e
I f o
. | b
negative sy

01‘?112111: <

Figure 2. Rortated version of Die;): the ¢-CAl region.

2.1. Hlustrating examples. We use three-candidate examples to miroduce the
basic teehnique and to show how by exploiting the geometry of D*(e ), scemingly
different concerns can be resolved with the same argiunent. While for simplicity and
ro avold unlikely cases we assume no pairwise election ends in a tie. our conclusions
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casily extend ro these tie-vote settings.

Monotonicity. A procedure is monotonic should a candidate still be elected after
she fmproves her ranking in the individual preferences. while each voter’s relative
ranking of the other candidates remains unchanged. For example. suppose afrer a
TV political debate. Mr. Smith decides to rank Ms. Young second instead of last
where he keeps fixed his relative ranking of the remaining two candidates. We would
not expect this preference change to hurr Ms. Young's chances. Indeed. procedures
failing to be monotonic (such as. say. runoff clections [Sm. 517) admit the perversity
where we can beat a candidate by increasing her support!

Suppose ¢, Ms. Young. is a CAI winner. Before the debare. Mr. Smith had ¢
bottom ranked. so in the original profile py lus type was either four or five: assume
Lie was rype-four with the e = ¢ = ¢; rauking. By changing his preferences as
deseribed. he changes from type-four to -three. so after the debare there 1s one less
rype-four vorer and one more type-three out of the 3 voters. Letting E; denote a
profile of type-j. the profile change is
(2.6) L =y = (0,01, -1.0.0) = —(Es — Eq).

M ' ) M Mo

To verify monotonicity. we need to discover whether anyv py supporting a D*(e)
ourcome allows rthe dy_.y profile change (Smith's change of preferences) to dislodge
¢1 (Young) from vierory. Using the geometric water pistol approacli. the equivalent
question is to determine whether there is a normal veetor N, ;. pointing in the
direction of helping ¢ (i.e.. toward rthe interior of D*(¢;)). where its angle with
d; 3 exceeds 90°. This angular information is determined by the sign of the scalar
product of two non-zero vectors

6

(2.7) (a.b) =Y a,b,

=1

where positive. negative. and zero values require. respectively, thie angle to be less
than. greater than, and equal to 90°. (As the boundaries are hyperplanes. a zero
value requires the profile change to be parallel to the boundary. so it does not cross, )
A compurtation shows that (Ny,.dy_3) = 2. (N 3.dy_3) = (Ny3.d_3) = 0.
Thus. the d(—3 profile change fails to influence the {3} and the {e2.¢3} pair-
wise ourcomes. but it has a positive impact (for ¢;) on the {¢;.co} clection. The
same clementary computations prove this is rrue for any such profile change. Con-
sequently, we recover the established (e.g.. see [N]) facr.

Theorem 1. For n = 3 cendidates. CM 18 monotonic,

Abstention. For a second scenario. suppose Mr. Smith not only missed the TV
debate {so AMs. Young. ¢, remains his botrom-ranked candidate), but he forgor
ro vote. Surely, this helps her or does it? As a typefour voter, Smith's actions
change the original A/-voter profile py by dropping one tvpe-four voter to define the
profile change p, —p; = MI- TP — _1]]“i E,. The (N:J pi) value rerurns the {¢;. ¢}
pairwisc clection outcome {(which 1s near zero whenever this pairwise election is
close to a tie vore). Therefore, the relevant portion of this profile change  the pare
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that indicates whether a different outeomne will oceur  is the Ey = (0.0.0.1.0.0)
rerm. Compurtations prove that (N7, ~E 1= (N} ;. -E,) = (N} ;. -E;) = 1.

As the positive values of the first two terms require Smith's forgerful action ro
Lelp ¢y, if the original profile py is far from the boundaries (so the profile change
cannot reach a boundary) or near either hyperplanes H'?_j._ j = 2.3. then. as we
would expeet. Mr. Smith’s action can assist. but not hurt. ¢;. The impact of the
(N3 5. —E ) = 1 computation is decided by whether there are py locarions where
a profile change in the N3, direetion hurts ¢y, This is equivalent to discovering
whether D3¢y ) has a 29 5 = 0 boundary where an ¢ improvement over ¢y moves the
outcone outside of P¥ (e ): namely. can a change in the vy 3 direction hurt ¢,7 (The
.U—LT scalar term requires such a profile ro he close  a voter away - to the boundary.)
It follows immediately from Fig. 2 that this happens only when the py outcome is in
the negative orthant (a cyclie region) near the wy 3 = 0. rp 2 < 0.5 < 0 boundary
surface. Thus. only for profiles p; supporting an outcome where the CA ranking
s ¢; ~ ¢y ~ ¢y (s0 all three candidates are scleeted) and the ¢3 = 0 outcome is
almost tied can Mr. Smith's forgetful actions help him. By not voting. the ;. ¢3
outcome is cither ¢9 ~ €3 or o = 3. so the CAI winner 1s Smith's sccond-ranked
¢y rather than Ms. Young., his bottom-ranked candidate. Other chioiees of inirial
preferences for Smith lead to the same conclusion.

Theorem 2. For n = 3 candidates with ¢ vs o CM top-ranked candidate. « CM
abstention porador can occur iff the CM outcome 1s a complete tie due to o cyche
outcome and the parrwise vote for (eo.cy) 13 nearly tied. The parador 1s caused
becanse, by o voter not wvoting. the ranking of this porr either 1s reversed. or ends
in o tie. For the CM outcome to be personally better, such a voler must have ¢
bottom-ranked.

Strategic voting. As a third scenario, suppose afrer Mr. Smirh missed the TV
debate. he learned rhar Ms. Young is projected to be a CA winner. Adopting

an “anyone but Young {e;)" attitude, Smirh wishes to vote strategically to defeat
her. His available oprions are %d_l%j = %(E, ~Ey). As (N} .dy_;} is cither
positive or zero for & = 2,3 and all j, if the original profile is either more than
a person away from the boundary of the profile set defining D* (¢ ). or near Hf‘k,
Swmith must accept Young's CM victory. But, (N3 ,.dy—;) > 0 for j = 1.5.6 and
zero otherwise. so Smith can successfully frustrate Ms. Young's victory only when
crossing an g4 = 0 boundary in favor of ¢y leaves the D*e|) ser. From Fig.2.
this requires the pp outcome to be in the negative orthant where the CA defines
a three-way tie caused by the evelic ¢y = ¢j.¢3 > 9.7 = ¢3 ourcomes, Also. this
outcome must be so close to a boundary thar Smith’s changed vote causes a ¢35 ~ ¢4
tic or ¢y > ¢z victory (and the CX ranking co = ¢ = 3.

These possibilities offer Smith several options: he even could pretend to be a
t¥pe-one voter - he could slvlv manipulate ([S17) the outcome - by publicly an-
nouncing and voting for Ms. Young (using the ranking ¢; > ¢35 = ¢3) to defeat her!
{ This example demonstrares why in the definition of “monotonicity”™ the voters are
required to improve the status of a particular candidate while keeping the relative
rankings of all others fixed. Although improving ¢;'s status, dy- also changes the
relative rankings of other candidates. so ¢ is hurt by the new profile that should
enhance her standing.)
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Notice the heavy price Smith pays for his obsession to defeat Young: his strategic
vote causes his top-ranked candidate ¢35 to lose her status as a N winner. The
new issue. then. is ro determine whether other voters could enjoy more strategic
success. or whether this example identifies a CM trait thar significantly mitigates
the effeets of strategic voring. To address this question where ¢; 1s a CAM winner,
the potential strategic voters {identified by subscript k) and their straregic actions
arc given by dip—; = T‘tl'f[EJ —Ep). b = 3.4.5,6.5 = 1.....6. We already have
examined the effects of crossing a w3 boundary. so it remains to investigate if a
2y boundary can be crossed. Bur the only way (N}, dg—j) < 015 if & and
identify. respectively. a positive and negative component of Nt ,. Thus b = 3 (i.c..
the ranking ¢ = ¢; = ) and j = 4.5.6. To see whether this type-three voter
ean enjoy more success than Mr. Smith by voring strategically. examine Fig. 2 ro
derermine where crossing the a5 = 0 coordinate plane m the ¢y direetion helps
this vorer. Tr surely hures should the new profile end up in the 270 <000y 3 > 0
region. as rhis change would elect e2. the strategic voter’s bottom-ranked candidate.
The remaining possibility {where py has ¢ as the sole CAl wingier) 1s the separating
boundary between where ¢ is the Condorceet winner and the negative orthant. Here,
this voter’s strategic action allows his rop-ranked candidate ¢35 ro be included, but
at the expense of also including Lis bottom ranked ¢y, Accepting this cost is the
ounly way a type-three voter can strategically influence the outconie.

Carrving this analysis a step further. recognize that p; must be near the eyclic
region for this type-three voter to have success. If this voter makes an ever so slight
miscaleulation because. in fact. py already 1s in a cyelic region near cithier a ¢ > ¢y
boundary (of the negative orthant because ry < 0) or a ¢y > ¢y boundary (of the
positive orthant because g 3 > 0). then the previously elever dy g strategy. which
affects the ourcome for all three pairs, backfires as eithier ¢; or ¢z becomes the sole
CAl winner  neither of these candidares is top-ranked for our straregic voter and
his top-ranked candidate is dropped. In fact. ir follows immediately from Fig. 2
that for a particular strategy, there are more opportunities (i.c.. more choices of
p1) where the strategy is counter-productive than strategically helpful.

These simple illustrations provide new insight into CA strategic behavior: in-
sight that removes much of the sting of the Gibbard [G - Satterthwaite [St] Theo-
rem. They underscore. for insrance. the critical fact that to avoid being connter-
productive a strategic action must be accompanied by surprisingly precise infor-
mation about the other voters™ preferences and intended action. Namely. withour
knowing the precise py value. a strategic action can hurt. rather than assist, a
voter's interests, But, with the exception of Congress and other settings where
votes are announced in advance. it is nor clear whether such precise informartion
is comuonly available. Coonsequently. it is not clear whether CAI strategic action
is. in general, wise. Furthermore. the examples prove that for a straregic acrion to
be successful. the original outconme must satisfy exacting and highly unlikely con-
ditions: so. except in contrived examples of the types used to illustrate academic
arricles. one must wonder whether strategic voting is a practical CM concern. Fi-
nally. ar least for n = 3 candidates, just by carrving out a couple more simple
computations, we learn that a penalty usually accompanies CN strategic attempts,

Theorem 3. For n = 3 candidates, suppose ¢y 1s a CM top-ranked candidate with
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pi1 where py docs not admit any pairwise tied wvotes. For a voler urthout ¢y fop-
ranked to successfully manipulate the outcome, py wmust erther define a cycle with
near tie votes for the (¢, ¢3) pair, or ¢y as the sole winner with one purrunse election
nearly tied. In the first cose, a voter with ¢ bottom-ranked can strategically ensure
the victory of his sccond-ranked candidate at the expense of depriving his top-ranked
condidate the py status of o CM winner. In the second case, o voter with ¢y maddle-
ranked can vote strategicelly to tnclude has top-ranked candidote as o CM winner,
but this action ensures his bottom-ranked candidate also becomes o CM winner.

The remaining strategic situations are the lighly unlikely settings with two or
more pairwise ties. With two ties, certain voters can include their second-ranked
candidate with the CAl sincere winner o). and with all pairwise vores ending in ties,
a voter can get his second-ranked candidate selected. As these regions correspond
to edges of D*(¢y) in Fig.2. we leave the simple analysis o the reader.

Weak consistency. Suppose there are only two election districts where. on elec-
tion night. Ms. Young's pollwatchier from each districer informs her that she is a CAI
winner in that district. Should her victory party start” Both profiles, py. p2. define
results in D e) and che full profile is py = Apy + (1 — A)p2 where A is the fraction
of all voters that reside in the first district, The py CA ourcome. then. is on the
line connecting the CAI outcomes for pp and py: the group outcome is determined
by the A value, (It is A of the distance fromn the first outconte to the second.) To
determine what can happen by combining the votes. it suffices to examine how
lines ean be drawn in Fig. 2 so that botl endpoiuts are in 2%(¢; ). If both endpoinrs
are in a o -Condorcet winner region, then thie convexity of this region requires the
full line ro remain in this region (so Young remains a CAl winner). However. with
endpoints in different evelie regions (the positive and negative orthants), it is casy
to position the line so that portions are in any desired region. Consequently. the
combined outcome can be whatever is desired: Young could be the sole CN winner.
shie could share this status with either one or both other candidates. or she could
be CAI jth ranked candidate for ;7 = 2 or 3. With more districts. thie outcome is
p = Zf:] Ap;. where Zf:l A; = 1.4, 2 0.0 s0 the same conclusion holds: e.g..
Als. Young could be a CM winner m all regions. bur the overall CAl loser. We
leave 1t to the reader to experiment with Fig, 2 to show that even if py 1s in the
¢1-Condorcet region. ¢ can lose should p, be 1 a cyvelic region {because the union
of these regions loses convexity ).

To sununarize. a choice procedure is weakly consistent [S1. 3 if when py and p.
have the same outcome. then rhis common outcome holds for the profile defined by
combining p, and p2. {This definition extends Young's [Y] “strong consistency”
which specifies what should oceur should both profiles have outcomes that need not
agree, but with some candidates in conmmon. )

Theorem 4. For n = 3 candidates, the CM is not weakly consistent. All illustrai-
g examples must have at least one of the profles m a cyclic reqron.

2.2, Unified approach. Although these scenarios sample significantly different
themes, conceptually and rechnically the analysis 1s the same. What emerges 1s the
lesson (holding for all decision and allocation procedures) that whether a profile
change ean cause expected. or unexpected and even paradoxical ourcomes. depends
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upon the location of the original profile and the geometry of the houndary set.
What makes the CN so important to analyze is that irs simpler geomerry divides
these effects into geometrically separate regions.

More specifically, the Condoreet region (the {rp, > 0.2, < 0} U {ri2 2
0.r4, < 0} portion) of D*(y) is where the consequences of profile changes are
of the expected type. This benign behavior is preserved by the normal vectors
N?_i which only recognizes changes in ¢;’s status, The more unusual. strategic.
or paradoxical outcomes. then. critically depend upon the geometrie positioning
of the cvelic regions (with the CM rauking ¢; ~ ¢z ~ ¢3). For the most part,
these conclusions oceur beecause this portion of D*e) admits normal directions
N:;.k. j.k # 1 where changes in the status of other candidares can adversely affect
c's CM status.

A similar explanation holds for other allocation and decision procedures ([S1.
Chap. 4). To illustrate. we show hLow this approach simplifics the analysis of
positional voting defined by {w = Lowy, wz = 0). 0 <y < 10 where wj points are
assigned to a voter's jth ranked candidate. The election tallies for ¢ ¢2. ¢y are.
1‘(‘51)(?('ti\'cly. P petwapytiwaps. wapy FepytpstPs. WPt P+ pyT e ps. Thus.
the equation representing a ¢ ~ ¢ vote is where the first summation minus the
sccond is zero. From the coefficients of this expression. the normal vecror favoring
¢y over ¢4 1s N = {1 — wa, 1wy, —wy. ~1, w4 — 1), So. for instance. the effect of
Smith not voting. d = —Ej. helps ¢ as (N.—E;) = w» > 0. and all of Smith’s
strategic chioices 1o clect e over ¢ are dy.j. where j = 5.6 for wy < 5 and j =5
for L < wy < 1 (as (N.dy—s) = ws — 1, IN.dy_4) = 2wz — 1.} In other words.
when other procedures are analyzed, rhe only difference in the approach is that
different boundary normals are used.

In this same geometric manner all other multiple profile CAI issues - whether
they involve groups or individuals  can be examined. Specifying a topie derermines
the profile change vectors. d, while the signs of scalar products (using Eq. 2.7 and
the Nj.k normal vecrors) determine what can occur and where, These signs indicate
wherher or not the profile change moves in the direcetion of N? |« the choice of N::_k at
various profiles determines whether the change helps or lnirts a particular candidare.
Then. those profiles that admit such bhehavior ean be completely elassified. In this
manner. for instance. it becomes easy to analyze the strategic action of a group of
voters of different types: the resulting couclusion identifies the highly exacring and
carcfully coordinated conditions that must exist.

3. MORE CANDIDATES:; MORLE POSSIBILITIES

These n = 3 conclusions extend in the same way to any number of candidates.
However, as geometric diagrams are impossible, analytic deseriptions of the geome-
try - of the D" () boundaries aud the associated directionus of the normal vectors
arc required. The important fact 1o remember for n > 3 candidares is that D™ (ey ).
the set of pairwise outcomes where ¢ is CM top-ranked, is the union of the region
of pairwise votes where ¢; 1s a Condorcet winner. of portions of rthe hounding hy-
perplanes (plus portions of certain lower dimensional parts of the boundary) of this
C'ondorcet region. along with many regions with evelic rankings.

One fact 1s clear: by being the union of many regions (where several represent
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eveles), D)) admits additional boundaries with different orientations. Each new
boundary orientation provides added opportunities for profile changes to leave (or
enteri Dey). Consequently. we must expect more kinds of multiple profile con-
cerns. As these new orientations are introduced by the cyelie portions of D (¢))
unexpected or strategic outcomes tend to be caused by regions admitting cyelic
rankings: c.g.. when the voters have mixed views about the selection of the avail-
able substitutes (as manifested by the evele). a ranking change of some seemingly
unrelated pair can affect ¢'s fare. In other words. precisely where we need the
CAI because a majority winner does not exist, troubles arise. Nevertheless. the
C)M geometry conveniently separates the effeets of those ourcomes that are to be
expected from paradoxical or manipulative conclusions,

3.1. Technical description. The n > 3 candidates define !

voter tvpes: list
them in some order. If p; represents the fracrion of voters with the jrh ranking.

then a profile can be represented by a point in the simplex

n!

Sitn'v = {p e R"| Zf’l =1l.p, =20 Y}

=1

The profile set supporting a pairwise tic vote between ¢; and ¢ defines the hyper-
plance H': with (5) = i’iﬂ_— pairs there are (1) such hyperplanes. Each side of
H]'; defines the profile set supporting the pairwise victory of one of the two can-
didates. The normal vector N"j that points into the side of H” where ¢; beats
¢; has entries equally divided between 1 and —1: the positive nlhus correspond ro
that half of the coordinates (voter types) representing the relative ranking ¢; = ¢;.
As the CAl depends upon the number of pairwise victories. ties. and defears of each
candidate. the boundaries of the profile sers supporting eachh CAI outcome consist
of portions of these H]' hiyperplanes. Therefore, the potential CAl effects of a given
profile change d is dt"r(lllllll(‘d by the sign of the scalar product (\I" .d).

As true in Seet. 2. to avoid the higher dimensional geomerry of B we emphasize
the geometry of the space of pairwise votes. Following [S11. the eleetion tallies for
the (1) pairs defines a point in R2) where ¥y = (N}, p) specifies the (¢,.¢;)
clection outcome.  (This #; ; = (N} . p) computation is equivalent to summing
those pg's corresponding ro a voter type with ¢; = ¢; and then subtracting the sum
of the remaining voter types.) I C7 s the cube in RU:) where each 1 ocan vary
over the values [—1.1. a point representing clection outcomes must be in C% As
cach unanimity profile defines a particular vertex of this cube, they determine nt of
the 2(2) vertices. The representation cube {(the space of pairwise clection outcomes
resulting from voters with transitive preferences) is the convex hull of these vertices,
Any (rational) point in the represenration (_ub(? is supported by a profile.

Let D¢y ) be the subser of the represcutation cube where ¢ is CA top-ranked.
Geomerrically, D" (eq) is the union of the ¢-Condorcer region (i.c.. where ry, > 0
for all j}. portions of cerrain boundaries of this region (as some &y ; values are zero,
the admissible boundaries are where the number of positive coordinares ) ; 1s at
least as large as the difference between positive and negative values of coordinates
i Tor any k). plus regions with evelie rankings (where the pairwise victories from
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the evele cancel one anothier to contribure CN scores of zero) where ¢'s CA score
is the largest.

To illustrare with n = 4. the scores from the eyele where oy 5, ra 5. 03, 4. 204 all
Lave positive values contributes a CAI rally of zero for each candidate. Thus, the
signs of the remaining rwo pairwise outcomes. 1y 3.9 4. determine the CM tally.
If. for instance. both values are positive, the CM ranking is ¢) ~ ¢y = ¢3 ~ ¢4
supported by the tally (1.1, —1. ~1). Thus. this region forms a portion of D'{cy).
A related DY ey) region is defined by keeping the zy 3 and 2, 4 values. but reversing
all other values. { The only difference is that the cycle cireles in the other direction. )
Similarly, DY (¢y) also includes the orthant where @y 2. 723, 23,1 are positive (so, the
scores from this eyele contribute a CAI score of zero to these three candidates), and
where each of these candidates wins the remaining pairwise election to have the the
CA ranking ¢ ~ ¢ ~ ¢y = ¢y and CN scores (1.1, 1, =3).

It is important to note that all (rational) points in D" (e ) are supported by somce
profile. (This is a trivial extension of the argumenrt in [S11) Therefore, we can
concentrate on the geometry of this set rather than profile examples. (Examples.
however, are easy to construct.) Also, the argument varies betweenn D™ (¢ ) and the
supporrting set of profiles: to avoid introducing new notation. borh sets are denoted
by D{e ). All H'; planes form porrions of the boundary for D"(¢; ). so the more
interesting issue is to determine the remaining boundaries. Again. ro simplify the
analysis, we consider only settings withour pairwise ties: the reader should have no
rrouble analyzing this excluded case.

Proposition 1. For n = 3 and for cvery 1. # 1. a portion of H; 13 a bound-
ary for D'er). On different portions of this boundary both NV, points o the
interior of D¢y ). For n > 4 and without porrwise ties. this asserfion can occur
on D" (ey) reqions where there are b CM top-ranked condidates (which include ¢ ).
The restrictions on k are that 2 <k < n and k # n —1 for odd walues of n, and
2 <k <n—1 for even valucs of n. Swmilarly, for n 2 5. when D™ () 15 drvided
into regions based on which candidates share the CM top-rank, ot can be that the
CM top-ranked candidates wan with only one more porrunse wictory than other can-
didates ond that the same boundary assertion holds between these regrons. (Thas
applies even to regions where o) 1s the sole CM top-ranked candidote.)

Proof. For n = 3, this assertion follows from the two cyelic regions of Fig. 2. For
n = 4. modify rthe above example involving a three-candidate ¢yele by replacing
¢y, ez with ;. ;. and then create a second example (a sccond region of D'(ey)
by reversing cach ranking in the original cvele. A similar modification of the first
n = 4 example shows how rwo candidates can be CA top-ranked. Although the
argument for n > 3 1s sumilar, we defer 1ts proof to the Appendix. O

The importance of this proposition is that it tells us the kinds of profile changes
that can affect ¢;’s CA top-ranked status.

Proposition 2. Let d be a direction of profile change and leti. j £ 1. If (d. N7 #
0. then there are chowces of py so that this profile change drops ¢ from being a CM
top-ranked candidate, and there are other choices of py se that either ¢; or ¢ joins
¢y as being CM top-ranked.

The first case arises when ¢ and other candidates are CAI top-ranked: the second
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is when ¢; wins one more pairwise vietory than some other candidate. The proof
of Proposition 2 follows from Proposition 1. In fact. by using Proposition 1 and
considering profiles near edges (representing where several pairwise elections are
nearly tied), the reader should have no trouble constructing examples where several
candidates either join or drop out of the CA top-ranks thanks to the actions of a
single voter,

It remains to compute (N7 ;. d). Because components of d indicate how many
vorers change preferences. this analysis is simple. Namely, if d has more voters
reversing the preference ¢ = ¢ than voters reversing ¢; = ¢j. then (N7 d) is
positive: in the contrary case, (N7 ;. d) is negative. The remaining setting, with a
balance between these numbers. has [.\T;'_}.d) = (). Norice that because most cholce
isstes are defined in terms of vorers changing preferences in the same manner, this
computation is simple,

3.2. Changes that make a difference. Propositions 1 aud 2 allow us to analyze
and quickly resolve multiprofile issues just by defining the profile change associated
with a specified issue. This is illustrated with the following where we start with the
particularly strong restriction on profile changes imposed by monotonicity. More
precisely. monotonicity requires that if ¢ is seleered with the original profile. then
a vorer changing his ranking of ¢; must rank her higher than previously while
Leeping the relative ranking of the remaining n — 1 candidates unchianged. Thus, all
admissible changes must be in a Ny, direction. Although some pairwise methods.
such as runoff elections and agendas. fail to be monotonic (so the boundary reglons
of their D{¢; ) region admit interior vectors of the =N type). the following known

stateruent (e.g.. see [N]} indicares that the CM geometry is betrer hehaved.

Theorem 5. For v > 3 candidates. the CM 13 monotonic,

Proof.  All admissible changes are in the direction of N for some ;. The
conclusion follows, O

One way to appreciate the monotonicity conditions is to relax them unrtil condi-
tions emerge where ¢ can be liart by receiving inereased support, One change is to
permit voters to improve ¢ s ranking even if she is not top-ranked. Although this
new definition requires sets other than D7 (¢ ) to be analyzed, the boundaries of the
profile sers still include portions of the hyperplanes HYp o As admissible chianges
remain in the direction NY . this increased support can ouly help. but never hurt,
¢ 's CN standing. .

A second way to relax monotonicity is ro admit changes mn the directions other
than N . For instance. after hearing a debate between ¢ and ;. a voter may
rerank the candidates to ¢;'s advantage just by interchanging ¢ and e, If ¢
was ranked more than one above ¢; where, say. ¢y separated them. then this -
improvement creates a profile change in the NY, direction: a change where. accord-
ing to Prop. 2. initial profiles can be found where the new outcome drops ¢ out of
CMI top-place or forces e to share this status with another candidate.

Theorem 6. Forn > 3 condidates. the CM fails any definttion of "monotonicity”
with respect to ¢ where voters relative rankings of the other n —1 condidates need
not be fized when wmpromng ¢y s ranking.
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The same analysis applies to all CM properties. With the propositions. just
compute the profile changes defined by an issue, According to Prop. 2. any change
not of the monotonicity type can cither add or subtract candidates from the CA
rop-ranked class. Consequently there exist situations where any {¢;. ¢, } change can
help or hurt ¢ ’s status. This is true whether the profile changes oceur when:

1. The number of voters remains the same. This includes issues sucli as mono-
tonicity. manipulation. and Pareto conditions.

L2

The number of voters change. This includes the effects of abstention. consis-
tency. ote.

3. Preferences are not strict. This addresses issues such as truncated ballots
where a voter refuses to vote for certain candidates because he knows nothing
about them.

In cach setting. with Prop. 2 we can identify both the profile sets allowing a specified
multiple profile change and the kinds of results whicl: follow.

3.3. Same number of voters. We alrcady have discussed monotonicity. so the
remaining issues include game theoretic changes and strategic voting.  We start
with Parcto efficiency. (Recall, x is a Pareto point if. for any proposal y. some
voter prefers X to y.)

Theorem 7. All sincere CM top-ranked outcomes are Parcto pomnts,

This known conclusion ([N. p. 847) does not hold for all voring procedures

even those defined by pairwise outcomes. To see this, consider the agenda that
matches the (3. ¢2) majority winner against ¢;. and that majority winner against ¢y,
Although ¢4 wins with the three voter profile ¢ = ¢y = c3 = ¢4, co = €3 = ¢4 = 1.
eq > g = ¢ = c2. this 1s not a Pareto outcome because all voters strietly prefer ¢;
to ¢y,

Proof. The assertion follows if no candidate is universally preferred o ¢ a CAI
rop-ranked candidate. If chis is false because all voters prefer ¢p = ¢ then ¢ loses
the {c).ep} pairwise contest and. for every {e.¢;} election that ¢; wins. ¢» wins
the {e2.¢;} election. Thus, ¢y is CAI ranked higher than ¢, O

For manipulative outcomes. it is to the advautage of a vorer of type & ro vote as
type jif de—; provides a personal improvement of the election ourcome: that s, if
it clecrs a candidate that this voter prefers to ¢, As it follows from Prop. 2 thar
this always is possible. it remains to characterize the choices of p; allowing such a
manipulation and to determine whether once n 2 4 it is possible to manipulate a
CMI elecrion without incurring the penalties described in Thm. 3.

Theorem 8. There are sitwation where a voter with relative rankings ¢y = ¢ con
strategreally vote to eliminate ¢ as o CM top ranked condidate and ensure that ¢,
is the sole CM top-ranked candidate. For this to occur, both ¢, and ¢y are CM
top-ranked with py and cither there s o candidate ¢ that beats ¢ by one vote or
ey beats ¢; by one vote. In the first case, this strategie voter has the sincere relateee
ranking ¢ = c3 = ¢ the second, this voter has the stncere rankmg ¢y = ¢;. Such
conditrons are possible only for n > 4.

The strategic vote for the first case. of course. is to vore for ¢ rather than
¢,: in the second it is to vore for ¢; over ¢;. According to the propositions. there
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always exist such situarions where ¢ and ¢; are the only two-top-ranked candidares.
Without ties. this is possible only with 1 > 4. The theorem now follows. [

This theorem proves that although the CM resists the consequences of the
Gibbard-Satterthwaite Theorem with three candidates. the sting of this assertion
returns once n > 4. Moreover. with Prop. 2. it now is easy to concoct all sorts
of other manipulative settings. We leave the exploration of these options to the
reader.

3.4. Changing numbers of voters. Consistency first was explored by Smirh
[Sra” and Young [Y. Larer. Saari [S1. 3] relaxed the conditions so that they would
apply to a wider variety of procedures. The relaxed condition of “weak consistency™
is to determine if the CM top-ranked candidates for p; and p» agree. must this be
so when the profiles are combined? Again. the answer is no.

Theorem 9. For n > 4, the CM 1s not weakly consistent. Ezamples must imvolve
profiles not in the ¢-Condoreet reqion.

The convexity of the ¢ Condorcet region means that if py. po are in this region
then so 1s Apy + (1 — Mp2. Thus, 1o find counter examples for weak consistency.
we need regions with eyelie rankings. For instance. place p; in a region with one
eyvele and py in the region defined by the reversed cyele but where all other pairwise
rankings are the same for both regions. While both profiles define the same CAI
scorcs for all candidates. by choosing them appropriarely. the points on the line
connecting the two profiles can replace the evelie rankings in any desired manner.
The conclusion follows. U

We now consider what might happen should a voter vote. or not vote. Such an
analysis includes the abstention paradox that Fishburn and Gerhlein [FG. Moulin
[MI. and Saari [S1.2] have analyzed for other procedures. Using the rerminology of
[S1". we consider the following narural requirements: Positive involvement - If ¢
is CM top-ranked. adding a vorer who has Ler top-ranked should not weaken her
CA@ status. Negative inmvolvement - The status of ¢ should not improve when a
new voter is added who has her bottom-ranked.

Theorem 10. For n > 3. the CM satisfics netther positroe nor negatvoe mnolve-
ment.

This theorem shows that Moulin's conclusion [Al requiring all Condorcet meth-
ods ro suffer the abstention paradox holds for the CATL Again. thanks to the propo-
sitions. the proof is trivial. To verify that positive involvement can be violared.
consider where ¢y and ¢» ave CM top-ranked and N, is an interior normal. So.
with p; near this boundary. adding a vorer with ¢; top-ranked who also has the
relative ranking of ¢, = ¢y will cause ¢ to lose. For negative involvement., consider
a setring where ¢ and ¢ are CAI top-ranked, where NJ 4 is the interior normal. A
voter with ¢4 = 3 can drop ¢y from CM top-rank independent of how he ranks ¢;.
{Notice that this proof extends to many other procedures.) [

3.5. Loss of strict rankings. What we have in mind here are those situations
where voters don't have a transitive ranking of the candidates, or don’t rank all of
them. If the group’s ranking of pairs involves a evcle. the CM scoring approach
cancels the cvele and ranks the candidates based on the remaming rankings of pairs.
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This is not the situation with an individual ranking rhat includes a cyeler instead.
it could e that a vote from the cvele could alter the ranking of a pair. and from
this. the identity of the CM rop-ranked candidates. A similar situation applies to
where a voter has a transitive ranking for only a parr of the candidates. Some of
the notions here find their origins in the work of Fishburn and Brams [FB1. FB2
where they considered the consequences of voters casting rruncated ballors witlt
the Hare method and runoff elections. The reasons for casting such a ballot range
from their setting where voters try to manipulate the outcome to more innocent
explanations where voters refuse to vote when they don’t know the candidates. In
cither case. a truncated ballot (where a voter does not vote in all pairwise elections)
could help or hurr his cause.

Theorem 11. There erist situation where, if a voter costs o truncoted bollot. the
CM outcome is personally more fovorable than of the voter voted sincerely. There
are other sttuations where the outcome s personally worse.

Inn summary. once 1 >> 4. the geometry of the D"(¢;) region is such that the CA
admits a host of problems and paradoxes. The important fact is that 2l can be
casily analyzed in the same way., Moreover. this approach extends ro other decision
and voting procedures.

APPENDIX

Proof of Proposition 1. The basis of this proof is that all possible pairwise
rankings are admissible. { This is suggested by the deseription of the representation
cube. For an analytic proof, see the references for the construction of *dictionaries”™
in [S4].) We first show it is impossible (without pairwise ries) for all candidates to
be CAI top-ranked when n is even. The couclusion follows becanse the CA scores
range fromn —1.n —3.... 1, —1....., —(n — 1) so zero 1s not an admissible value.
Burt as the sum of the CAI scores equal zero. not all candidates can have the same
CAl score.

We need to show thar, without ties, there can be precisely & CX top-ranked
candidates. Start with a matrix where the 7, entry deseribes ;s outcome from
the {eci.¢;} election: thus. this is a skew-symmetric martrix where the 7, ) entry is
the negative of the j.7 entry and rhe diagonal clements are zeros, For an example
where n — 1 candidates are CAI top-ranked when » is even. let all candidates beat
¢y (50 all non-zero entries in the last column are +1). For cacli row. have the first
half of the remaining n — 2 enrries +1 and the lasr half —1 where entries wrap
around the row to start in the ¢; column. Thus, up to the Zth row. all enrtries
to the left of the diagonal arc negative: ar this row, all cutries to the right of the
diagonal are positive. For rows bevond the Zth. there are not enough columms to
fit in all positive entries, so they are placed ro the exrreme right of the row. Notice
that this construetion leads to a consisrent signs placement for the enrries. The
resulting skew-symmetrie {actually, permurarion) marrix is of the form

€l 0 1 1 ... =1 -1 ... 1
e -1 0 1 1 -1 1
Cn—1 1 1 1 —1 (0 1
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As the jth candidate’s CM score is the sum of terms in the jth row, the conclusion
holds.

For n even, a m CM top-ranked candidate example, 2 +1 < m < n — 1.
is constructed by reversing the values for the last m nonzero entries in the last
column. {This also reverses the last i nou-zero entries of the botrom row.) As
these are the only candidates who lose another pairwise clection (to ¢,) and as ¢,
still hias more losses than victories. the conclusion follows. For 1 < m < 5 -1
C\ top-ranked candidates. the aualysis is slightly modified. For ¢; to be the only
top-ranked candidate, change the first —1 in the first row to +1 (which means
that the first +1 in the first column now becomes a —1 and that ¢; now beats
¢zy1). Notice that ¢q has one more victory than co.. ... cz. To have m top-ranked
candidates. do the same for the first m rows (with corresponding changes for the
first m columns). This argument has 1o be modified for m = 5. Here. for the first
m rows. let the first m entries after the diagonal be +1 and the rest —1. This gives
cach of these candidates a CM score of 1, where. with this assignment. ¢,—; has
n_ 4 1 victories. To ensure that all of these candidares end up with a negative
score, fill in the rest of the rows ro th right of the diagonal with —1.

For odd values of n, all candidates can be tied for top-rank. To prove this. let
cach row have +1 for the first % entries after the dingonal and —1 for the rest.
But. without ties. it is impossible to have n — 1 CM top-ranked candidates when
n is odd. This is because the smallest non-negative CM scores are 2 and 0. As
the surn of CM scores equals zero. one candidate must have a negative score so all
others must have at least 2 points. As this ineans there are at least 2(n — 1} positive
points and at most —(n — 1) for negative scores. this violates the CM summartion
constraint.

To show that any other & value is admissible, start where all entries in the last
column are +1 (so all candidates beat ¢,,). Because an even number of candidates
remain. the above analysis ean be applied to this submatrix.

It remains to show that H',. 7.7 # 1. is a boundary for one of these regions
when & > 2. In the construction, both ¢; and ¢; are top-ranked. and there are
candidates other than ¢; swho beat ¢u. Suppose this is ¢,. So, if the {cs. 04} election
would be reversed. ¢, would have one more victory than ¢; and this would drop ¢
as a top-ranked candidate, Thus. portions of HJ | serve as part of the boundary
of D"{¢y) with interior normal Ny . For 7.7 where we want NYro be an interior
normal. interchange the second and 7th rows and columns. and the sth and jth
rows and columns,

The same construction shows that D" (¢ ) can be divided into sections mdicating
the number of candidates that are CM top-ranked. Similarly. it shows that eacl
H', is part of the separating boundary between these regions and that. in different
sections, both =N are interior normal vectors. [
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