Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/198976 
Erscheinungsjahr: 
2019
Schriftenreihe/Nr.: 
CESifo Working Paper No. 7616
Verlag: 
Center for Economic Studies and ifo Institute (CESifo), Munich
Zusammenfassung: 
Tax administrations use machine learning to predict risk scores as a basis for selecting individual taxpayers for audit. Audits detect noncompliance immediately, but may also alter future filing behavior. This analysis is the first to estimate compliance effects of audits among high-risk wage earners. We exploit a sharp audit assignment discontinuity in Norway based on individual tax payers risk score. Additional data from a random audit allow us to estimate how the audit effect vary across the risk score distribution. We show that the current risk score audit threshold is set far above the one that maximizes net public revenue.
Schlagwörter: 
tax audits
tax revenue
tax reporting decisions
income tax
machine learning
risk
profiling
JEL: 
D04
H26
H83
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.