Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/195849 
Erscheinungsjahr: 
2018
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 6 [Issue:] 2 [Publisher:] MDPI [Place:] Basel [Year:] 2018 [Pages:] 1-18
Verlag: 
MDPI, Basel
Zusammenfassung: 
We review two complementary mixture-based clustering approaches for modeling unobserved heterogeneity in an insurance portfolio: the generalized linear mixed cluster-weighted model (CWM) and mixture-based clustering for an ordered stereotype model (OSM). The latter is for modeling of ordinal variables, and the former is for modeling losses as a function of mixed-type of covariates. The article extends the idea of mixture modeling to a multivariate classification for the purpose of testing unobserved heterogeneity in an insurance portfolio. The application of both methods is illustrated on a well-known French automobile portfolio, in which the model fitting is performed using the expectation-maximization (EM) algorithm. Our findings show that these mixture-based clustering methods can be used to further test unobserved heterogeneity in an insurance portfolio and as such may be considered in insurance pricing, underwriting, and risk management.
Schlagwörter: 
generalized linear model
cluster-weighted model
ordered stereotype model
ordinal data
JEL: 
C02
C40
C60
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
373.26 kB





Publikationen in EconStor sind urheberrechtlich geschützt.