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Abstract: We review two complementary mixture-based clustering approaches for modeling
unobserved heterogeneity in an insurance portfolio: the generalized linear mixed cluster-weighted
model (CWM) and mixture-based clustering for an ordered stereotype model (OSM). The latter is
for modeling of ordinal variables, and the former is for modeling losses as a function of mixed-type
of covariates. The article extends the idea of mixture modeling to a multivariate classification
for the purpose of testing unobserved heterogeneity in an insurance portfolio. The application
of both methods is illustrated on a well-known French automobile portfolio, in which the model
fitting is performed using the expectation-maximization (EM) algorithm. Our findings show that
these mixture-based clustering methods can be used to further test unobserved heterogeneity in
an insurance portfolio and as such may be considered in insurance pricing, underwriting, and risk
management.

Keywords: generalized linear model; cluster-weighted model; ordered stereotype model; ordinal data

JEL Classification: C02; C40; C60

1. Introduction

The multivariate classification ratemaking has made significant advances in the past decade
with the introduction of different types of statistical methods for pricing individual risks. These new
techniques bring important benefits to insurers such as more equatable pricing of the individual risks,
better competitive advantage, and protection against adverse selection and support informed decisions
about the type of risk that the insurer is willing to write. Werner and Modlin (2016) introduced many
of these techniques with a primary focus on generalized linear models (GLMs), which are used in
pricing and reserving.

According to the Actuarial Review (Baribeau 2016) “the predictive modeling is advancing
far beyond its general linear model (GLM)-based roots due to the explosion of new data sources,
technological innovation and advanced analytics.” Recent literature on extensions of GLMs with
mixture modeling has been a part of this innovation process, and this is proposed by several researchers.
A finite mixture of Poisson regression models with an application to insurance ratemaking was studied
by Bermúdez (2012) for count data. The authors recognized that unobserved heterogeneity in this
type of data requires more structure in the modeling techniques and that the current model fitting can
be improved by using finite mixture of bivariate Poisson regressions. The unobserved heterogeneity
in the zero-inflated type of data is attributed to the fact that variance is often larger than the mean.
In 2015, another Poisson mixture model for count data was considered by Brown and Buckley (2015)
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for modeling heterogeneity in a Group Life insurance portfolio. The authors showed violation of
heterogeneity across groups and suggested that putting similar groups together is necessary for
further analysis. Later, a non-parametric Bayesian approach was considered in modeling this mixture
distribution by incorporating a Dirichlet process prior and using reversible-jump Markov chain Monte
Carlo (Green 1995) to estimate the number of components. Garrido et al. (2016) and Shi et al. (2015)
consider relaxing the GLM assumption of independence between the number and the size of claims.
The multi-modality of univariate insurance losses was recently modeled using mixtures by Miljkovic
and Grün (2016), Verbelen et al. (2014), Lee and Lin (2010), and Klugman and Rioux (2006). The findings
of these studies indicate a need to explore the modeling of unobserved heterogeneity in a regression
setting where the amount of claims is linked to several other covariates and the goal is to find a finite
number of sub-populations of policyholders in an insurance portfolio.

In predictive modeling with a GLM setting, unobserved heterogeneity may occur when important
covariates have been omitted and their influence is not accounted for in the analysis (Grün and
Leisch 2008). The unobserved heterogeneity may not be fully captured when a single component
GLM is used to model the data set. While these techniques have been explored in other fields, they have
not been fully adopted in the actuarial field. Actuaries may consider relaxing the assumption that the
regression coefficients and dispersion parameters are the same for all observations. In this case, a goal
is to find groups of policy holders with similar regression coefficients.

Multiple techniques have been developed which deal with the grouping of heterogeneous data
such as hierarchical clustering (Johnson 1967; Kaufman and Rousseeuw 1990), association analysis
(Manly 2005), and k-means clustering algorithm (Jobson 1992; Lewis et al. 2003; McCune and Grace 2002).
There are a number of clustering methods based on mathematical techniques such as association indices
(Chen et al. (2011); Wu et al. (2008)), distance metrics (Everitt et al. (2001)), and matrix decomposition
(Manly (2005); Quinn and Keough (2002); Wu et al. (2007)). However, these algorithms do not have
a likelihood-based formulation and therefore do not provide a reliable method of model selection
or assessment. A particularly powerful likelihood-based approach to one-dimensional clustering
based on finite mixtures, with the variables in the columns being utilized to group the objects in the
rows, is provided by McLachlan and Basford (1988), McLachlan and Peel (2004), Everitt et al. (2001),
Böhning et al. (2007), Wu et al. (2008), and Melnykov and Maitra (2010).

The objective of this article it to review two recently proposed mixture-based clustering approaches
for modeling unobserved heterogeneity in an insurance portfolio, which, to the best of our knowledge,
have not yet been exploited by the practitioner in the actuarial science area. Moreover, we focus on
modeling severity of losses as a function of several covariates arising from different sub-populations.
These sub-populations are grouped into clusters based on a similar historical experience or well-defined
similarity rules and the results of each group can be considered in underwriting and ratemaking.
We particularly consider two different data modeling frameworks: mixture modeling of ordinal
variables (for classified data based on the level of risk) and the mixture of GLMs for a mixed type
of covariates (for individual data). As an illustration, we show how these two mixture models
can be used to model an insurance portfolio and have complementary properties. Similarities and
differences of both approaches are discussed in the context of the data structure available for the
selected insurance portfolio.

In an insurance context, ordinal variables are often defined based on a risk classification with
intrinsic order. For example, driver age can be treated as an ordinal outcome with the youngest
drivers being associated with the highest risk propensity. Similarly, losses can be treated on an ordinal
scale based on the intensity of claims. There are a variety of approaches to the modeling of ordinal
data that properly respect the ordinal nature of the data. Liu and Agresti (2005) and Agresti (2010)
described various proportional odds version models using adjacent–categories logits, cumulative logits
McCullagh (1980), and continuation–ratio logits McCullagh and Nelder (1989). Our article focuses on
the ordered stereotype model (OSM) introduced by Anderson (1984), which is more flexible than the
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most common models as a result of adding additional score parameters associated with the distance
among ordinal categories.

The generalized linear mixed cluster-weighted model (known as CWM) was recently proposed by
Ingrassia et al. (2015) as a flexible family of mixture models for fitting the joint distribution of a random
vector composed of a response variable and a set of mixed-type covariates with the assumption that
continuous covariates come from Gaussian distribution. The CWM method does not consider ordinal
data; thus, we are also interested in the mixture-based clustering for OSM built to handle ordinal
data previously proposed by Fernández et al. (2016). The ordinal data in insurance setting can be
considered if the policyholders have been previously classified based on the level of risk (e.g., 1 is the
lowest level of risk and 5 is the highest). This classification is often obtained for underwriting and risk
management purposes. Both methods assume that an inherent clustering effect is present in the data;
therefore, each sub-population of the variable of interest, such as claims, can be modeled separately.
One of the main advantages of these approaches over other non model-based clustering techniques is
their likelihood-based foundation because maximum likelihood theory provides estimators and model
selection. Another advantage of these two methods is that they complement each other, i.e., they allow
for flexibility in terms of data collection and categorization. If the collected data is all organized based
on the ordinal levels corresponding to several risk classifications, then a mixture-based clustering
method for ordered stereotype model would be a suitable tool to further test the heterogeneity in the
data. For insurance data sets that are currently analyzed using existing GLMs, the CWM approach
would allow for detecting an unobserved heterogeneity in the data by testing if more than a single
component GLM fits the data better. If the CWM model provides a better fit to the data, then this
model should replace a single component GLM, where applicable.

The remainder of this paper is organized as follows. Section 2 introduces the formulation and
model estimation for both mixture-based methods as well as the model selection criteria. Section 3 is
devoted to the presentation of the data set used in this study and the results obtained using these two
approaches. Conclusions are summarized in Section 4. The appendix provides additional results with
respect to the analysis conducted as part of Section 3.

2. Methodology

2.1. Mixture-Based Clustering for the Ordered Stereotype Model

Fernández et al. (2016) proposed an extension of the model-based approach proposed in Pledger
and Arnold (2014) for ordinal responses. This approach considered finite mixture models to define a
clustering structure and used the OSM introduced by Anderson (1984) with the aim of formulating
the ordinal procedure. The stereotype model has the advantage that it requires a smaller number
parameters to be estimated than the more commonly used baseline-category logit model or the
multinomial logistic regression model (Agresti 2010, Section 4.3.1). Moreover, this model estimates
from the data possibly unequal spacing among the levels of the ordinal responses in the form of a set
of ordered score parameters. These scores are directly interpretable as measures of similarity between
neighboring levels of the variable. This ease of interpretation is an advantage over other ordinal-based
models such as the proportional odds model and the continuation-ratio model.

We illustrate here the model formulation for the row clustering version. The analysis for the
column clustering version is basically the same, but exchanging the parameters related to rows by
their equivalent column parameters. For the row clustering version, the probability that the ordinal
response response {yij} (i = 1, . . . , n and j = 1, . . . , m) takes the category k (k = 1, . . . , q) is represented
by the following log odds:

log

(
P
[
yij = k | i ∈ g

]
P
[
yij = 1 | i ∈ g

]) = µk + φk(αg + β j),

k = 2, . . . , q, g = 1, . . . , G, j = 1, . . . , m

(1)
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where the inclusion of the monotone increasing constraint 0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 ensures that the
variable response Y = (Y1, . . . , Yn) = {yij} is ordinal (see Anderson (1984)). For simplicity, we assume
that the ordinal responses all have the same number of categories q so that yij ∈ {1, . . . , q}, and they
correspond to the policy holders groups that are already classified based on some underwriting criteria.
The parameters {µ2, . . . , µq} are the cut points, and {φ2, . . . , φq} are the parameters which can be
interpreted as the “scores” for the categories of the response variable Yij. G ≤ n is the number of row
groups, and i ∈ g means row i is classified in the row cluster g. The set of parameters {β1, . . . , βm}
quantify the main effects of the m. We restrict µ1 = φ1 = 0, φq = 1, ∑G

g=1 αg = ∑m
j=1 β j = 0 to ensure

identifiability. It is important to note that the actual membership of the rows among the G row-clusters
is unknown; therefore, it is considered missing information. Further, we define {τ1, . . . , τG} as the
(unknown) proportions of rows in each row group, with ∑G

g=1 τg = 1. We can view {τg} as the a priori
row membership probabilities.

The probability of the data response yij being equal to the category k conditional on a given
clustering is

θgjk(Ω) = Pr
[
yij = k | i ∈ r

]
=

exp(µk + φk(αg + β j))

∑
q
`=1 exp(µ` + φ`(αg + β j))

,

k = 1, . . . , q, g = 1, . . . , G, j = 1, . . . , m

(2)

where Ω is the parameter vector {{µk}, {φk}{αg}, {β j}}.

Likelihood functions: The (incomplete) likelihood of the data is

L(Ω, {τg} | {yij}) =
n

∏
i=1

[
G

∑
g=1

τg

m

∏
j=1

q

∏
k=1

(
θgjk

)I(yij=k)
]

where θgjk is the probability of the data response defined in Equation (2).

We define the unknown row group memberships through the following indicator latent variables,

Zig = I(i ∈ g) =

{
1 if i ∈ g

0 if i /∈ g
i = 1, . . . , n, g = 1, . . . , G

where i ∈ r indicates that row i is in row group g. It follows that ∑G
g=1 Zig = 1 (i = 1, . . . , n),

and, since their a priori row membership probabilities are {τg},

(Zi1, . . . , Zig) ∼ Multinomial(1; τ1, . . . , τG), i = 1, . . . , n.

Consequently, the complete data log-likelihood of this model using the known data {yij} and
the unknown data {zig} is as follows:

lc(Ω, {τg} | {yij}, {zig}) =
n

∑
i=1

G

∑
g=1

zig log(τg) +
n

∑
i=1

m

∑
j=1

q

∑
k=1

G

∑
g=1

zig I(yij = k) log
(

θgjk

)
.

Parameter estimation: The parameter estimation for a fixed number of components G is performed using
the maximum likelihood estimation approach fulfilled by means of the expectation-maximization
(EM) algorithm proposed by Dempster et al. (1977) and used in most finite mixture problems
discussed by McLachlan and Peel (2004).

The EM algorithm consists of two steps: expectation (E-step) and maximization (M-step). As part
of the E-step, a conditional expectation of the complete data log-likelihood function is obtained
given the observed data and current parameter estimates. In the finite mixture model, the latent
data corresponds to the component identifiers. As part of the E-step, the expectation taken
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with respect to the conditional posterior distribution of the latent data, given the observed data
and the current parameter estimates, is referred to as the posterior probability that response
yij comes from the gth mixture component, computed at each iteration of the EM algorithm.
The remaining part of the M-step requires finding component-specific parameter estimates Ω
by solving numerically the maximum likelihood estimation problem for each of the different
component distributions.

The E-step and M-step alternate until the relative increase in the log-likelihood function is no
bigger than a small pre-specified tolerance value, when the convergence of the EM algorithm is
achieved. In order to find an optimal number of components, maximum likelihood estimation
is obtained for each number of groups G, and the model is selected based on a chosen model
selection criterion.

In this model, the EM algorithm performs a fuzzy assignment of rows to clusters based on the
posterior probabilities. The EM algorithm is initialized with an estimate {Ω̂(0), {τ̂(0)

g }} of the
parameters and proceeds by alternation of the E-step and M-step to estimate the missing data
{Ẑig} and to update the parameter estimates. In this section, we develop the E-step and M-step
for row clustering. This development follows closely Fernández et al. (2016) (Section 3).

E-Step: In the tth iteration of the EM algorithm, the E-Step evaluates the expected values Ẑig of the
unknown classifications Zig conditional on the data {yij} and the previous estimates of the

parameters {Ω̂(t−1), {τ̂(t−1)
g }}. The conditional expectation of the complete data log-likelihood

at iteration t is given by

Q(Ω, {τg} | Ω̂(t−1), {τ̂(t−1)
g }) = E{Zig}|{yij},Ω(t−1)

[
`c(Ω, {τg} | {yij}, {Zig})

]
=

n

∑
i=1

G

∑
g=1

log(τ̂(t−1)
g )E

[
zig | {yij}, Ω̂(t−1)

]
+

n

∑
i=1

m

∑
j=1

q

∑
k=1

G

∑
g=1

I(yij = k) log
(

θ
(t−1)
gjk

)
E
[
zig | {yij}, Ω̂(t−1)

]
.

(3)

The random variable Zig is Bernoulli distributed, so that E
[

Zig | {yij}, Ω̂(t−1)
]

=

Pr
[

Zig = 1 | {yij}, Ω̂(t−1)
]
, and, applying Bayes’ rule, we obtain

Ẑ(t)
ig = Pr

[
Zig = 1 | {yij}, Ω̂(t−1)

]
=

Pr
(
{yij}, Ω̂(t−1) | zig = 1

)
Pr
(
zig = 1

)
∑G
`=1 Pr

(
{yij}, Ω̂(t−1) | zi` = 1

)
Pr (zi` = 1)

=
τ̂
(t−1)
g ∏m

j=1 ∏
q
k=1

(
θ̂
(t−1)
gjk

)I(yij=k)

∑G
`=1

{
τ̂
(t−1)
` ∏m

j=1 ∏
q
k=1

(
θ̂
(t−1)
`jk

)I(yij=k)
} .

Finally, we complete the E-step by substituting the previous expression in the complete data
log-likelihood at iteration t expressed in Equation (3),

Q̂(Ω, {τg} | Ω̂(t−1), {τ̂(t−1)
g }) =

n

∑
i=1

G

∑
g=1

Ẑ(t)
ig log(τ̂(t−1)

g )

+
n

∑
i=1

m

∑
j=1

q

∑
k=1

G

∑
g=1

Ẑ(t)
ig I(yij = k) log

(
θ̂
(t−1)
gjk

)
.

(4)

M-step: The M-step of the EM algorithm is the global maximization of the log-likelihood (4) obtained
in the E-step, now conditional on the complete data {{yij}, {Ẑig}}. For the case of finite
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mixture models, the updated estimations of the term containing the row-cluster proportions
{τ1, . . . τG} and the one containing the rest of the parameters Ω are computed independently.
Thus, the M-step has two separate parts.

The maximum-likelihood estimator for the parameter τg where the data Zig are unobserved is

τ̂
(t)
g =

1
n

n

∑
i=1

E
[

Zig | {yij}, Ω̂(t−1)
]
=

1
n

n

∑
i=1

Ẑ(t)
ig , g = 1, . . . , G.

To estimate the remaining parameters Ω, we must numerically maximize the conditional
expectation of the complete data log-likelihood in Equation (3). In the case of row clustering,

Ω̂(t) = argmax
Ω

[
n

∑
i=1

m

∑
j=1

q

∑
k=1

G

∑
g=1

Ẑig I(yij = k) log
(

θgjk(Ω)
)]

where the maximization is conditional on the parameter constraints following Equation (1).

2.2. The General Linear Cluster-Weighted Model

In this section, we summarize the CWM model proposed by Ingrassia et al. (2015) starting with
the relevant background. Suppose that Y = (Y1, . . . , YN) is a vector of independent random variables
with the density function of a distribution from the exponential family given by

f (yi|θi, φ) = exp
{

yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
where θi is a natural parameter and φ is a scale parameter. Consider that Y is related to a set of variables
x = (x1, . . . , xp) through the following linear relationship

η = g[E(y|x)] = Xβ (5)

where β is p× 1 vector of parameters and X is an N × p design matrix, η is the linear predictor and
g[E(y|x)] is a link function, and it is considered as a simple mathematical function in the original
formulation of GLMs by Nelder and Wedderburn (1972). In this model, Y is referred to as a response
variable and x is a vector of continuous and discrete type explanatory variables (e.g., covariates).

Let (X
′
, Y)

′
be a vector defined on some space = with values in X × Y . Further, assume that

there exist G partitions of =, defined as =1, . . . ,=G. Gershenfeld (1997) has introduced CWM based on
Gaussian mixtures with the joint distribution, f (x, y) of (X

′
, Y)

′
, expressed as follows

f (x, y) =
G

∑
g=1

τg f (y|x,=g) f (x,=g) (6)

where f (y|x,=g) and f (x,=g) are conditional and marginal distributions of (X
′
, Y)

′
and τg represents

the weight of the g-th component s.t. ∑G
g=1 τg = 1, τg > 0.

Ingrassia et al. (2015) introduced a broader family of CWMs that allows for the component
conditional distributions to belong to the exponential family and for the mixed ype of covariates.
The joint distribution of a random vector (X

′
, Y)

′
is obtained by splitting the covariates into continuous

and discrete as X = (V
′
, W

′
)
′

under the assumption of independence. In this setting, the model in
Equation (6) can be expressed as

f (x, y; Φ) =
G

∑
g=1

τg f (y|x, ϑg) f (x, θg) =
G

∑
g=1

τg f (y|x, ϑg) f (v, θ
′
g) f (w, θ

′′
g) (7)
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where f (y|x, ϑg) is a conditional density of y|x,=g with parameter ϑg, f (v, θ
′
g) is the marginal

distribution of v with parameter θ
′
g, f (w, θ

′′
g) is the marginal distribution of w with parameter θ

′′
g,

and v and w are the vectors of continuous and discrete covariates respectively. Further, all model
parameters are defined as Φ = (θ, τ, ϑ). The conditional distribution f (y|x, ϑg) is assumed to belong
to the exponential family.

Modeling for f (y|x, ϑg) and f (x, θg): The CWM model is based on the assumption that f (y|x, ϑg)

belongs to the exponential family of distributions that are strictly related to GLMs. The link
function in Equation (5) relates the expected value g(µg) = β0g + β1gx1, . . . ,+βpgxp. We are
interested in estimation of the vector βg, so the distribution of y|x,=g is denoted by f (y|x, βg, λg),
where λg denotes an additional parameter associated with a two-parameter exponential family.

The marginal distribution f (x, θg) has the following components: f (v, θ
′
g) and f (w, θ

′′
g). The first

component is modeled as p-variate Gaussian density with mean µg and covariance matrix Σg as
φ(v, µg , Σg).

The marginal density f (w, θ
′′
g) assumes that each finite discrete covariate W is represented as

a vector wr = (wr1, . . . , wrcr )
′
, where wrs = 1 is wr, which has the value s, s.t. s ∈ {1, . . . , cr},

and wrs = 0 otherwise.

f (w, γg) =
q

∏
r=1

cr

∏
s=1

(γgrs)
wrs

, g = 1, . . . , G (8)

where γg = (γ
′
g1, . . . , γ

′
gq)
′
, γgr = (γ

′
gr1, . . . , γ

′
grcq)

′
, γgrs > 0, and ∑cr

s=1 γgrs, r = 1, . . . , q.
The density f (w, γg) represents the product of q conditionally independent multinomial
distributions with parameters γgr, r = 1, . . . , q. Considering these assumptions, the model
in Equation (7) can be stated as

f (x, y; Φ) =
G

∑
g=1

τg f (y|x; βg, λg)φ(v, µg, Σg) f (w, γg). (9)

If the CWM models allow for the conditional distribution f (y|.) to be Binomial or Poisson,
then they are referred to as the Binomial CWM or the Poisson CWM, respectively. The CWM
are also built to handle Gaussian, log-normal, and gamma distributions of f (y|.). In the next
subsection, we will discuss the parameter estimation of the model in Equation (9).

Parameter Estimation: The EM algorithm discussed in the previous section is used to estimate
parameters of this model. Let (x

′
1, y1)

′
, . . . , (x

′
n, yn)

′
be a sample of n independent pairs

observations drawn from the model in Equation (9). For this sample, the complete data likelihood
function, L(Φ), is given by

Łc(Φ) =
n

∏
i=1

G

∏
g=1

[
τg f (yi|xi, βg, λg)φ(vi, µg, Σg) f (wi, γg)

]zig (10)

where zig is the latent indicator variable with zig = 1, indicating that observation (xi, yi)

originated from the j-th mixture component, and zig = 0 otherwise.

By taking the logarithm of Equation (10), the complete data log-likelihood function, `c(Φ),
is expressed as

`c(Φ) =
n

∑
i=1

G

∑
g=1

zig
[
log(τg) + log f (yi|xi, βg, λg) + log φ(vi, µg, Σg) + log f (wi, γg)

]
. (11)
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It follows that, at the t-th iteration, the conditional expectation of Equation (11) on the observed
data and the estimates from the (t− 1)-th iteration results in

Q(Φ; Φ(t−1)) =
n

∑
i=1

G

∑
g=1

τ
(t−1)
ig

[
log(τg) + log f (yi|xi, βg, λg) + log φ(vi, µg, Σg) + log f (wi, γg)

]
.

The idea behind the EM algorithm is to generate a sequence of the estimates from the maximum
likelihood estimation starting from an initial solution Φ̂(1) and iterating it with the following
steps until convergence:

E-step: The posterior probability that (x
′
i, yi)

′
comes from the g-th mixture component is calculated at

the t-th iteration of the EM algorithm as

τig
(t) = E[zig|(x

′
i, yi)

′
, Φ(t)] =

τg
(t) f (yi|xi, β

(t)
g , λg

(t))φ(vi, µ
(t)
g , Σ

(t)
g ) f (wi, γg

(t))

∑G
g′=1

f (yi|xi, β
(t)
g′

, λ
(t)
g′
)φ(vi, µ

(t)
g′

, Σ
(t)
g′
) f (wi, γ

(t)
g′
)τ

(t)
g′

. (12)

M-step: The Q-function is maximized with respect to Φ, which is done separately for each term on
the right hand side in Equation (9). As a result, the parameter estimates τ̂g, µ̂g, Σ̂g, and γ̂g,
are obtained on the (t + 1)-th iteration of the EM algorithm:

τ̂
(t+1)
g =

1
n

n

∑
i=1

τ
(t)
ig

µ̂
(t+1)
g =

1

∑n
i=1 τ

(t)
ig

n

∑
i=1

τ
(t)
ig vi

Σ̂
(t+1)
g =

1

∑n
i=1 τ

(t)
ig

n

∑
i=1

τ
(t)
ig (vi − µ̂

(t+1)
g )(vi − µ̂

(t+1)
g )

′

γ̂
(t+1)
gr =

∑n
i=1 τ

(t)
ig vrs

i

∑n
i=1 τ

(t)
ig

,

while the estimates of β are computed by maximizing each of the G terms

n

∑
i=1

τ
(t)
ig log f (yi|xi, βg, λg). (13)

Maximization of Equation (13) is performed by numerical optimization in the R language
(R Core Team 2016) in a similar framework as the mixture of generalized linear models are
implemented. For additional details about this implementation, the reader is referred to
Wedel and De Sabro (1995) and Wedel (2002).

2.3. Model Selection Criterion

In mixture-based clustering, the model selection is often made based on the Akaike information
criterion (Akaike 1974) and the Bayesian information criterion (Schwarz 1978) using the following formulas

AIC = 2`+ 2k

BIC = 2`+ k ln(n)

where l represents the value of the log-likelihood function, k represents the number of estimated
parameters in the model, and n is the sample size. Calculation of AIC and BIC is completed for each
selected number of mixture components, G. The best model is then selected based on the lowest value
of AIC and BIC with the corresponding value of G. We compute both AIC and BIC for the models
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discussed in this section. However, we make the final decision based on BIC only since the previous
literature suggested that BIC should be preferred over AIC in mixture modeling (for discussion, refer to
Fraley and Raftery 2002).

3. Application

3.1. Data

The French motor claims data set, on 413,169 motor third-party liability policies, was accessed
from the CASdatasets ((Dutang and Charpentier 2016); Miljkovic (2017)) in R, for the purpose of
our analysis. Both claim number and corresponding losses are available from the same portfolio of
policyholders. Charpentier (2014) used the same data set to illustrate the modeling of frequency and
severity of claims using various single component GLMs. In order to illustrate how OSM and CWM
models are applied, we focus our analysis on Region 24 (R24), engine power f, and car brand category
“Renault, Nissan, or Citroen” with the sample size of 1269 claims. The R24 has about 39% of the total
French policies written, with engine power type f and “Renault, Nissan, or Citroen” being the most
popular cars.

The variables of interest for our analysis are loss amount, driver age, car age, density, and exposure.
When the CWM method is employed, loss amount, density, and exposure are treated as numerical
continuous variables, while driver age and car age are modeled as categorical variables. The driver age
and car age, coded as 99 (unknown), are excluded from the analysis. Table 1 provides the summary of
all variables used in both models.

We categorized the numerical variables into ordinal variables with the aim of applying the OSM
model over the same data set. The ordinal variables correspond to level of risk, where 1 is the lowest
level of risk and 5 is the highest. We assume that this classification has already been determined by
the underwriting practices and our goal is to test if there is a need for further classification due to
unobserved heterogeneity in the data. The OSM method is sufficiently flexible that it can be adopted
to the different variables and a different number of ordinal levels, depending on the data.

Table 1. Summary of the variables used in the cluster-weighted model (CWM) and the ordered
stereotype model (OSM).

CWM

Variable Name Description with Categorical Levels in Parenthesis

Driver Age <23 (1), [23, 27) (2), [27, 43) (3), [43, 75) (4), and [75+ (5)
Car Age <1 (1), [1, 5) (2), [5, 10) (3), [10, 15) (4), and 15+ (5)
Density continuous
Exposure continuous
Losses continuous

OSM

Variable Name Description with Ordinal Levels in Parenthesis

Driver Age <23 (5), [23, 27) (4), [27, 43) (3), [43, 75) (2), and [75+ (1)
Car Age <1 (1), [1, 5) (2), [5, 10) (3), [10, 15) (4), and 15+ (5)
Exposure <0.25 (1), [0.25, 0.50) (2), [0.50, 0.75) (3), [0.75, 1.00) (4), and >1.00+(5)
Density <40 (1), [40, 200) (2), [200, 500) (3), [500, 4500) (4), and 4500+ (5)
Losses <1000 (1), [1000, 2000) (2), [2000, 50,000) (3), [50,000, 100,000) (4), and 100,000+ (5)

In the following subsections, we present the analysis and the results based on the two modeling
approaches presented in this paper.
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3.2. OSM Results

An array of row (claim) clustering models (1) with different numbers of clusters G = 1:5 were
fitted, and the information criteria measures AIC and BIC were computed. The results are summarized
in Table 2.

Table 2. Model selection. Ordinal variables

G Loglik AIC BIC

1 −12,155 24,453 24,599
2 −12,081 24,188 24,276
3 −11,777 23,584 23,685
4 −12,773 25,580 25,695
5 −12,851 25,641 25769

Both the AIC and the BIC indicate that the best model is the OSM version, including row (claim)
clustering with G = 3 clusters with AIC = 23,584 and BIC = 23,685. Each row is allocated to the group
to which the claim belongs with the highest posterior probability, where the mixing probabilities are
τ = (0.60, 0.29, 0.11). Figure 1 displays the resultant G = 3 clustering structures and their profiles.
The scatter plot (left) displays the average fitted scores over the 5 variables, using a weighted average
which accounts for the fitted spacings. Appendix B explains the details of the calculation of these
average scores.
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Figure 1. Scatter plot depicting the clustering composition for R = 3 (left) claim clusters. Different
color and shape symbols represent the clusters: Cluster 1 (square), Cluster 2 (circle), and Cluster
3 (triangle). The bar plot (right) displays the profile of the claims in each cluster. The percentage
represents the probability θgjk in each category (Equation (2)).

Different color and shape points and color bars represent the resultant G = 3 claim clustering
settings. Three groups are clearly distinguished in the scatter plot. This graph illustrates the conclusion
from AIC/BIC that, among the row clustering models, the model with three claim groups is the best for
our data. The bar plot (right) displays the profiles of the different clusters according to the estimated
probability of the data response yij being equal to the category k in Equation (2). We might conclude
that the claims classified in the first group correspond to those with the lowest risk regarding the
five categories, the ones in the second group have a more low-to-moderate risk, and the claims in
the third group are those with more risk. An attractive feature of the stereotype regression model
is that it allows one to test whether two adjacent categories are distinguishable. Since each ordinal
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response category k (k = 1, . . . , 5) is associated with a score parameter φk, the spacing between adjacent
φk values shows us how similar or different the categories are in terms of the effect of claims (see
Agresti (2010) (Section 4.3.5) and Fernández et al. (2016) (Section 1.2.2)). Table A1 in Appendix A
shows the parameter estimates and their uncertainty for the model with G = 3 clusters. For this data
set, the fitted score parameters were φ1 = 1, φ̂2 = 3.636, φ̂3 = 4.855, φ̂4 = 4.990, and φ5 = 5. Therefore,
the distance between ordinal categories “1” and “2” (2.636) is greater than that between other adjacent
categories. However, there is almost no spacing between categories “4” and “5”. This implies that
the relative frequencies in these two categories are independent of the clustering structure. Therefore,
retaining the distinction between “4” and “5” is not informative about the clustering structure. In that
case, the model still holds with the same scores if the ordinal scale is collapsed by combining those two
adjacent categories into one single response category. This spacing setting is illustrated in the spaced
mosaic plot (Fernández et al. 2014) in Figure 2.

Clustering Results (in %). Fitted Spacing

Ordinal Categories

C
lu

st
er

G=3

G=2

G=1

1 2 3 4 5

10.1 31.4 22.6 12.8 9.9

3.2 1.9 1.4 0.7 0.9

2.3 1.9 0.3 0.30.3

Figure 2. Spaced mosaic plot for the row clustering model G = 3. The height of each block is
proportional to the number of claims in each claim cluster; the width is proportional to the numbers of
each ordinal response within each cluster. The area represents the frequency of each combination, also
shown numerically in each block. The relative spacing between ordinal categories (e.g., 2.636 between
0 and 1, shown by the yellow, red, and green bars) has been determined by the data.

Common location measures in continuous response variables such as the mean or the median
are not directly applicable in ordinal responses. However, the estimates of the scores parameters
{φ̂k}, k = 1, . . . , q provide a continuous scale in [0, 1]. Re-scaling {φ̂k} conveniently as v1 = 1, vq = q,
and vk = 1 + (q− 1)× φ̂k gives us a continuous scale in the range [1, q], which we can use as a new
numerical value in our data set, replacing the original ordinal response values {yij} with the new
adjusted spacing {vk}. For instance, if initially yij = k, the replacement would be y?ij = vk. We can then
calculate average over this new data {y?ij} to determine the different profiles of each cluster from our
original heterogeneous data. Table 3 shows the mean in the data set.
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Table 3. Mean of the Ordinal Variables by Cluster (G = 3).

G Loss Driver Age Exposure Car Age Density

1 3.22 4.63 4.52 4.57 3.57
2 1.95 4.81 3.96 4.38 1.88
3 1.78 4.90 3.20 3.23 1.94

We can see that the cluster G = 1 is composed by the claims with the largest losses, which
corresponds to the youngest drivers, oldest cars, and largest density. The clusters G = 2 and G = 3
have very similar values apart from the car age, which makes them different.

3.3. CWM Results

Tools for generalized linear CWM are available in the statistical R package flexCWM, developed
by Mazza et al. (2017). The log-normal CWM was fitted to the following covariates: driver age, car
age, density, and exposure. The model selection procedure based on the AIC and the BIC found three
mixture components with their corresponding mixing probabilities as follows: 0.52, 0.43, and 0.05.
Table 4 shows the summary results for log-likelihood, AIC, and BIC. The CWM function selects the
best model based on the minimum value of BIC. In our analysis, the best model is detected when
G = 3 and these results are shown in bold in Table 4. The number of selected components is consistent
with the OSM approach.

Table 4. Model selection. CWM.

G Loglik AIC BIC

1 −12,495 25,025 25,112
2 −11,956 23,229 23,394
3 −11,064 22,222 22,464
4 −10,801 22,200 22,519

This analysis is done for Region 24, engine power f, and car brand category “Renault, Nissan,
or Citroen” with the sample size of 1269 claims. Within these settings, we can observe that the effect
of clustering is present in the portfolio and three subpopulation of drivers are found to have similar
characteristics. As a result 3-component GLM seems to provide better fit than a single component
GLM based on BIC criteria.

The left display of Figure 3 shows the distribution of losses by group and driver age while the
right display shows the distribution of losses by group and car age. It is apparent that the highest
losses are generated by the youngest drivers (age group 18–22), classified in Group 1. Additionally,
the second highest losses are reported by drivers aged 43–74 in Group 1. Old cars, 10–15 years old,
are associated with the largest losses in Group 1. A combination of young drivers (less than 23 years
old) and old cars (10–15 years) are indicators for the largest losses in this portfolio. A classification of
drivers in R24 can be done based on a level of risk to which they are exposed.

Table A2 in Appendix A shows the results for the estimated coefficients in each component of
the CWM model. Driver age and car age are coded as factors with Level 1 being omitted. Thus,
the coefficients shown in the output for driver’s age by category are estimated relative to the youngest
drivers (less than 23 years old). We can observe that the significance of the coefficients in each cluster
vary greatly across these clusters. The significance is coded as ≈ 0 (***), 0.001 (**), 0.01 (*), and 0.05 (.),
corresponding to the p-value of the specific coefficient. Coefficients in Cluster 3 are all significant,
while most of the coefficients associated with driver age and car age are not significant in the first two
clusters. Coefficients associated with driver age in Cluster 3 are all positive and increase with age
showing that losses increase with age. The 75+ age group generate on average more losses compared
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to the <23 age group. In Clusters 1 & 2, we observe the negative coefficients for drivers age, indicating
a reverse trend in losses for these two groups. Here, we can see that, in these groups, younger drivers
generate the highest losses, and, as age increases, losses tend to decrease on average, holding other
variables constant. Similarly, the coefficients for car’s age by category are estimated relative to the
newest cars (less than 1 year old). These coefficients are all significant in Cluster 3 and their values
are positive. We observe that older cars generate more losses on average, compared to newer cars in
Cluster 3. In Cluster 1, the car age coefficients are mostly negative while in Cluster 2 they are positive.
The sign and magnitude of the coefficients change depending on the relative center of each cluster.
Density variable is highly significant in all three clusters. Exposure variable is significant in Cluster 1
only. Here, the finite mixture modeling allows us to model a natural representation of heterogeneity
in three latent groups of policyholders in this insurance portfolio. Based on the BIC, the model fit
is improved by using three component GLM rather than one component. The interpretation of the
coefficients can be done for each cluster separately to account for the “observed” heterogeneity within
each subpopulation of the corresponding cluster.
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Figure 3. The bar plot (left) displays the profile of the losses in each cluster G = 1:3, by driver age.
The bar plot (right) displays the profile of the losses in each cluster G = 1:3, by car age.

4. Conclusions

This article reviews two recently developed mixture-based clustering approaches applied to
an insurance portfolio in order to find the optimal number of clusters and test the assumption of
heterogeneity. While these approaches have been used in different fields, to the best of our knowledge,
they have so far not been applied in the actuarial field for testing the unobserved heterogeneity in the
insurance portfolio. These two methods allow for flexibility in terms of data collection and categorization
and allow for further assessment of the underwriting risk. If all the collected data are organized based on
the ordinal levels corresponding to several risk classifications, then a mixture-based clustering method for
OSM would be a suitable tool to further test heterogeneity in the data. For the insurance data sets that
are currently analyzed using existing GLMs, the CWM approach would allow for finding multiple GLM
components when modeling frequency and severity of claims. The following family of distributions are
supported by CWM with their link functions: binomial, poisson, t-distribution, log-normal, gamma,
and inverse gaussian. If the multi-component CWM model provides a better fit to the data then a
single component GLM, we recommend that this clustering effect is considered in practice. The OSM
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and CWM approaches can be used by practitioners and academics in the actuarial area. We have
shown that they have complementary properties.

In a mixture-based clustering method for OSM, when the data is organized based on ordinal levels,
the effect of a few extreme losses needs to be tempered down. Allocating these extreme losses in an
ordinal, “high-risk” category makes them less influential in the model fitting, giving broad categories
which enable us to detect major overall patterns. This enables the inclusion of all of the different levels
of dispersion across ordinal categories. Additionally, assigning scores to ordinal categories provides
an easy way of showing the descriptive statistics. If practitioners have knowledge about the score for
each of the ordered categories, assigning scores might be the best way to analyze the data, because
ordinary linear models can be applied. However, if practitioners do not have any predetermined idea
about the spacing between adjacent categories, the use of an ordinal stereotype model is convenient,
as the data dictates non-equally spaced scores among ordinal outcomes. The estimation of the spacing
among ordinal responses is an improvement over other ordinal data models, such as the proportional
odds model and continuation-ratio model, although more research in performance comparison with
other equivalent methods is needed.

For illustration of these methods, we analyzed a small data set of French motor insurance claims
in Region 24 using the methods discussed in this paper. We found three clusters in the data using
both the CWM and OSM approaches and therefore show the presence of unobserved heterogeneity.
Due to the nature of an insurance portfolio, unobserved heterogeneity is most likely to exist in
almost all insurance portfolios. Thus, current modeling techniques should be extended to account
for mixture-based clustering that will allow practitioners to detect additional sub-populations of the
policy holders based on the same set of characteristics within an existing portfolio, and make the
appropriate pricing and risk management decisions for each group. These two methods can also assist
practitioners with the underwriting selection process as they have good complementary properties.

Finally, the future research may focus on comparing clustering structures resulting from different
methodologies. Over the same data set, one can apply three measures in common that are used to
compare clusterings: the Adjusted Rand Index (ARI), the Variation of Information (VI), and the
Normalized Information Distance (NID) proposed by Hubert and Arabie (1985), Meila (2005),
and Kraskov et al. (2005), respectively.

Appendix A. Model Fitting

Table A1 shows the parameter estimates and their uncertainty for the model with G = 3 clusters
as a result of fitting the OSM (1) for the French motor claims by policy data set.

Table A1. Results of fitting the OSM (1) for the French motor claims by policy data set.

Coefficient Estimation S.E. 95% C.I.

µ̂2 0.551 0.148 (0.261, 0.841)
µ̂3 −0.219 0.171 (−0.554, 0.116)
µ̂4 2.533 0.224 (2.094, 2.972)
µ̂5 −1.702 0.160 (−2.016, −1.388)

α̂1 1.096 0.210 (0.684, 1.508)
α̂2 0.044 0.125 (−0.201, 0.289)

β̂1 −2.188 0.143 (−2.468, −1.908)
β̂2 −2.631 0.199 (−3.021, −2.241)
β̂3 −0.002 0.190 (−0.374, 0.370)
β̂4 1.673 0.172 (1.336, 2.010)

φ̂2 3.636 0.209 (3.226, 4.046)
φ̂3 4.855 0.193 (4.477, 5.233)
φ̂4 4.990 0.154 (4.688, 5.292)
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Table A2. Results for the CWM model. The significance of the p-values are shown with the
corresponding level of significance as defined ≈ 0 (***), 0.001 (**), 0.01 (*), and 0.05 (.) for each
estimated coefficient.

Cluster 1

Coefficient Estimation S.E. p-Value

Intercept 7.3496 0.2765 <2.2×10−16 ***
DriverAge2 −0.3275 0.2137 0.1634
DriverAge3 −0.2088 0.1963 0.2877
DriverAge4 −0.0451 0.1925 0.8146
DriverAge5 0.4828 0.2812 0.0863 .

CarAge2 −0.1575 0.2119 0.4574
CarAge3 0.0086 0.2001 0.9653
CarAge4 −0.1845 0.2088 0.3770
CarAge5 −0.4929 0.2939 0.0938 .
Density 0.0004 0.0001 5.008×10−05 ***

Exposure −0.8287 0.1401 4.332×10−09 ***

Cluster 2

Coefficient Estimation S.E. p-Value

Intercept 7.0694 0.0088 <2.2×10−16 ***
DriverAge2 −0.0244 0.0084 0.0381 **
DriverAge3 −0.0157 0.0066 0.0177 *
DriverAge4 −0.0095 0.0074 0.1412
DriverAge5 0.0008 0.0078 0.9186

CarAge2 0.0051 0.7986 0.4246
CarAge3 0.0118 2.0162 0.0439 *
CarAge4 0.0101 0.0060 0.0970 .
CarAge5 0.0113 0.0077 0.1440
Density 3.2818×10−06 3.0435×10−06 0.2811

Exposure −0.0051 0.0047 0.2815

Cluster 3

Coefficient Estimation S.E. p-Value

Intercept 3.3979 0.2561 <2.2×10−16 ***
DriverAge2 1.2945 0.1588 8.84×10−16 ***
DriverAge3 1.2333 0.1382 <2.2×10−16 ***
DriverAge4 1.1096 0.1295 <2.2×10−16 ***
DriverAge5 2.6965 0.2028 <2.2×10−16 ***

CarAge2 0.6748 0.2105 0.0013 **
CarAge3 1.9939 0.18853 <2.2×10−16 ***
CarAge4 1.8501 0.19410 <2.2×10−16 ***
CarAge5 2.7567 0.26130 <2.2×10−16 ***
Density 1.7878×10−04 4.3673×10−05 4.520×10−05 ***

Exposure 6.2711×10−02 0.5266 0.5985

Appendix B. Average Scores for Scatter Plots

The average score (along the x-axis) shown in Figure 1 is calculated in the following way. First,
we compute the fitted response probabilities with the estimated parameters over the G row clusters
and the q response categories,

P[yij = k | i ∈ r] =
exp(µ̂k + φ̂k(α̂g + β̂ j))

∑
q
`=1 exp(µ̂` + φ̂`(α̂g + β̂ j))

,

i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , q, g = 1, . . . , G.
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From the previous probabilities, we can compute the weighted average over the q categories for each
row cluster

φrj =
q

∑
k=1

φ̂kP[yij = k | i ∈ r],

i = 1, . . . , n, j = 1, . . . , m, g = 1, . . . , G.

From here, we can calculate the mean response level of claim i to variable j, conditional on its (fuzzy)
allocation to the row clusters:

φ(ij) =
G

∑
g=1

ẑigφgj, i = 1, . . . , n, j = 1, . . . , m. (A1)

This is a numerical measure of the typical response to variable j for claims of row cluster g, appropriately
adjusting for the uneven spacing of the levels of the ordinal response. Finally, we determine the mean
of the previous weighted averages over the m columns in order to obtain the average fitted scores of
claim i across all of the variables

φ(i.) =
1
m

m

∑
j=1

φ(ij), i = 1, . . . , n.
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