Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/191790
Autor:innen: 
Chen, Likai
Wang, Weining
Wu, Wei Biao
Datum: 
2017
Schriftenreihe/Nr.: 
SFB 649 Discussion Paper No. 2017-026
Verlag: 
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk, Berlin
Zusammenfassung: 
For change-point analysis of high dimensional time series, we consider a semiparametric model with dynamic structural break factors. The observations are described by a few low dimensional factors with time-invariate loading functions of covariates. The unknown structural break in time models the regime switching e ects introduced by exogenous shocks. In particular, the factors are assumed to be nonstationary and follow a Vector Autoregression (VAR) process with a structural break. In addition, to account for the known spatial discrepancies, we introduce discrete loading functions. We study the theoretical properties of the estimates of the loading functions and the factors. Moreover, we provide both the consistency and the asymptotic convergence results for making inference on the common breakpoint in time. The estimation precision is evaluated via a simulation study. Finally we present two empirical illustrations on modeling the dynamics of the minimum wage policy in China and analyzing a limit order book dataset.
Schlagwörter: 
high dimensional time series
change-point analysis
temporal and cross-sectional dependence
vector autoregressive process
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.