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Abstract

For change-point analysis of high dimensional time series, we consider a semiparametric model with
dynamic structural break factors. The observations are described by a few low dimensional factors
with time-invariate loading functions of covariates. The unknown structural break in time models
the regime switching effects introduced by exogenous shocks. In particular, the factors are assumed
to be nonstationary and follow a Vector Autoregression (VAR) process with a structural break. In
addition, to account for the known spatial discrepancies, we introduce discrete loading functions. We
study the theoretical properties of the estimates of the loading functions and the factors. Moreover,
we provide both the consistency and the asymptotic convergence results for making inference on the
common breakpoint in time. The estimation precision is evaluated via a simulation study. Finally we
present two empirical illustrations on modeling the dynamics of the minimum wage policy in China
and analyzing a limit order book dataset.

Keywords: high dimensional time series, change-point analysis, temporal and cross-sectional dependence,
vector autoregressive process
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1 Introduction

Emerging situations of big data call for statistical tools to learn the intrinsic complex structure. Modeling

the structural break for high dimensional time series is our object to study. A very popular approach is

to consider high dimensional time series with factor structures, see for example Bai and Ng (2008) and

Stock and Watson (2011). In this paper, we consider a characteristic-based factor model, which is used to

describe the common movement of time series with nonparametric functions of covariates as loadings. The

model is known as the dynamic semiparametric factor model (DSFM), and has been studied in Park et al.

(2009) for time varying covariates. Emphatically, Connor et al. (2012) and Fan et al. (2016) also consider

a similar model majorly applied in asset pricing, and the only difference is that the covariates are set to

be time-invariant. In addition, a sizable literature has shown the applicability of such type of models as

it takes full advantage of the information provided by large cross-section and time-series dimensions. For

example, DSFM has been applied by Härdle et al. (2012) in modeling and forecasting the limit order book

dynamics, Fengler et al. (2007) in describing implied volatility surface dynamics, van Bömmel et al. (2014)

in discovering the risk patterns and brain activities, Härdle and Majer (2016) in yield curving modeling,

Trück et al. (2014) in modeling and forecasting electricity spot prices, etc.

Although the DSFM successfully reduces the dimensionality of the data and disentangles the spatial

and temporal effects, the common factors are prone to exhibit structural changes over a long time span.

Many applications in economics and finance need a methodology on detecting and modeling structure

breaks. For example, to evaluate the heterogeneity of the minimum wage policy in China, a cross sectional

data set on the minimum wage is collected over many years. One would like to see how the overall policy

changes over time, and how much heterogeneity is there for different regions.

Nevertheless, there is a vast literature on detecting structural breaks in various statistical models other

than a high dimensional semiparametric modeling framework. For example, Andrews (1993) and Bai and

Perron (1998) on complex regression models; Wied et al. (2012) and Preuß et al. (2015) on the second-order

characteristics of a time series; Dette and Wied (2016) on a new formulation of a change point hypothesis

testing. Furthermore, Wu and Zhao (2007) consider inference for trend stationary processes, and Shao and
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Zhang (2010) propose new tests for change point analysis in time series. Regarding high dimensional time

series change point analysis, Jirak (2015) provides a framework to test the mean change using CUSUM

statistics. Notably for factor models, there are also many recent articles on estimating loading changes,

such as Cheng et al. (2016) using shrinkage methods and Bai et al. (2016) focusing on establishing the

asymptotic distribution of the LS estimator for a structural break.

However, there is no literature to our knowledge on conducting change-point analysis in a semiparamet-

ric high dimensional time series modeling framework. For the latent dynamic factors, instead of estimating

breaks in the loading parameters, we target at fitting a structural break VAR process. This brings both

new theoretical and empirical perspectives in change-point analysis in semiparametric time series models.

Importantly, we establish the asymptotic distribution of our break point by allowing for general temporal

and cross-sectional dependence in the error terms. For example, an application is regarding limit order

book data modeling, where one is interested in understanding the quantities of the asset traded in the

financial market. The loading functions are functions of price levels and may not be continuous from the

ask side to the bid side. Moreover, the underlying driving factors may change their dependency structure

over time.

Our model is thus named as a structural break DSFM (SBDSFM), as we assume that factors follow

a structural break vector autoregression model (SBVAR). SBVAR is applied to change-point analysis for

low dimensional time series. For example, Galvão (2006) uses it for modeling policy change effects and

predicting recessions. Moreover, to incorporate the cross-sectional effect, the discontinuity in the cross

sectional dimension is modeled as a partition estimator of the loading functions. To be more specific, the

nonparametric loading functions are constructed by partitioning the support of the covariates into disjoint

cells, which does not become smaller with the sample size, and within each cell the unknown regression

function is approximated by a basis expansion using a fixed-order B spline basis. Using SBDSFM allows

us therefore to account for the structural breaks in time and cross-section dimension. We show that the

model is helpful for detecting and making inference on the latent structural change for high dimensional

time series.

We contribute the literature in three aspects. Firstly, we propose a SBDSFM model with an embedded
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break structure, and we also study its identification scheme and estimation method. Secondly, we show

the consistency of the semiparametric estimates. And for the latent factors, a consistency and distribution

theorem allow us to make inference on the breakpoint. Thirdly, we illustrate the good empirical perfor-

mance of our SBDSFM model via simulations and empirical examples. Our paper is organized as follows,

see Section 2 for the model description and estimation, Section 3 for the relevant theorems and discussions.

Simulations results are shown in Section 4. Section 5 consists of two applications. The technical details

are delegated to the Appendix.

2 Model

In this section, we lay down the general model setup. First of all we list the necessary math notation used

throughout the paper. For matrix A, denote |A|F (resp. |A|2, |A|∞, |A|1) as the matrix Frobenius norm(resp.

spectral norm, ∞ norm, 1-norm). For k > 0 and vector v = (v1, . . . , vd)
> ∈ Rd let |v|k = (

∑d
i=1 |vi|k)1/k

and |v|∞ = maxi≤d |vi|. For two positive sequences of numbers (an) and (bn), denote an = O(bn) or

an . bn(resp. an � bn) if there exists a positive constant C such that an/bn ≤ C(resp. 1/C ≤ an/bn ≤ C)

for all large n, and denote an = o(bn) or an � bn (resp. an ∼ bn), if an/bn → 0 (resp. an/bn → 1). For two

sequences of random variables (Xn) and (Yn), write Xn = oP(Yn), if Xn/Yn → 0 in probability. Let λi(·)

be the ith largest eigenvalue, λmin(·) and λmax(·) be the minimum and maximum eigenvalues respectively.

2.1. Dynamic Semiparametric factor models (DSFMs). Let εt = (εt,1, εt,2, ..., εt,L)>, t = 1, 2, ..., T, be

a sequence of random vectors and the model we consider is (N, T →∞)

Yt,j = m0(Xt,j) +
L∑
l=1

Zt,lml(Xt,j) + εt,j, j = 1, . . . , N. (2.1)

Here Zt = (Zt,1, Zt,2, · · · , Zt,L)> can be understood as the common factors, the term m0(Xt,j) can be inter-

preted as the conditional expectation of the individual specific effects and ml(Xt,j), l ≥ 1, are taken to be

generalized nonparametric loading functions. Similar models are adopted in many papers in the literature,

see, Connor et al. (2012), Fengler et al. (2007), Härdle et al. (2012), Park et al. (2009), Brüggemann et al.

(2008), etc.
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To incorporate both temporal and spatial dependencies, we shall consider the commonly used moving

average (MA) process for the noise sequence εt = (εt,1, ..., εt,N)>,

εt =
∑
k≥0

Bkηt−k, (2.2)

where ηt = (ηt,1, ηt,2, . . . , ηt,p)
> with ηt,j, t, j ∈ Z, being independent and identically distributed (i.i.d.)

random variables with zero mean and unit variance, and (Bk)k≥0 are matrices in Rp×p such that εt is a

proper random vector. If Bk = 0 for all k ≥ 1, then the noise sequences are temporally independent, and if

matrices Bk are diagonal, then the sequences are spatially independent. In the latter case (εt,j)
T
t=1 becomes

a MA sequence which is independently distributed with respect to different j. The MA(∞) process is very

widely used in practice and it includes many important time series models such as vector autoregressive

moving averages (VARMA)

(I −
p∑
l=1

ΘlBl)Xi = Xi −
p∑
l=1

ΘlXi−l =

q∑
k=1

Ξkηi−k,

where Θl and Ξk are real matrices such that det(I −
∑p

l=1 Θlz
l) is not zero for all |z| ≤ 1.

2.2. Temporal and cross-sectional breaks. To incorporate the temporal break, consider a time break

point τ �. Let εt = (εt,1, εt,2, ..., εt,L), t = 1, ..., T, be i.i.d. random vectors. For A = (A1, A2, ..., AM), denote

B(A) = A1B1 +A2B2 + ...+AMBM , where B is the backward shift operator. Assume the factors Zt satisfy

Zt = B(E)Zt1t≤τ� + B(Ẽ)Zt1t>τ� + εt, t ≥ 1, (2.3)

and Z0, Z−1, ..., Z−M+1 are any vectors in RL, where E = (E1, E2, ..., EM), Ẽ = (Ẽ1, Ẽ2, ..., ẼM) and τ �

is an unknown constant. Here the lags for the two regimes, denoted as M1 and M2, can be different or

unknown by letting M large enough and Ei = 0, Ẽj = 0 for i > M1, j > M2.

Remark 1. [Comparison with Park et al. (2009)] Our settings in (2.1) are different from Park et al. (2009)

in two major aspects: firstly, Zts follow a nonstationary SBVAR process, namely the coefficients of VAR

changes after an unknown break point, while Park et al. (2009) assumes that Zt follows a stationary and

strong mixing process. Assuming the SBVAR model allows for a change point analysis, and the assumption
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leads to new issues of identification and estimation, secondly, Park et al. (2009) assumes εt,j to be i.i.d.

and the distribution to be sub-Gaussian, while we have general assumptions allowing for spatial temporal

dependence and we impose only moment assumptions on the distribution of εt,j. 2

It should be noted that the number of factors stays the same throughout the model. The spatial

discontinuity can be handled by taking into account discontinuous bases for ml(·), and ml(·) can be

approximated by
∑J

k=1 al,kφk(·), where φk(·) is taken to be ψi(·)1·∈Rr where Rrs form the space of C in

the whole support of Xi,t. ψi(·) are tensor product B- spline basis, and i, r corresponds to the index

k. For example, Rr can be used to model the presence of discontinuities of regional minimum wage

policies in China. Define the matrix of coefficients A
def
= (al,k)l,k (for every factor we have chosen the

same number J of basis {φk}). Denote matrix Φ(Xt) = (φ(Xt,1), φ(Xt,2), ..., φ(Xt,N))> ∈ RN×J , where

φ(x) = (φ1(x), φ2(x), ..., φJ(x))>. Let m(x) = (m0(x),m1(x), . . . ,mL(x))>.

2.1 Estimation

With the model 2.1 on hand we can estimate A and the dynamics of Zt according to the following steps.

Step 1. We obtain a group of Â, Ẑt, 1 ≤ t ≤ T, by minimizing h(A, z1, z2, ..., zT ) =
∑T

t=1 |Yt−Φ(Xt)A(1, z>t )>|22

(Â, Ẑt, 1 ≤ t ≤ T ) = argminA,zt,1≤t≤Th(A, z1, z2, ..., zT ). (2.4)

It is not hard to see that the minimum point is not unique. More specifically, for any minimum point

(Â0, Ẑ0
t , 1 ≤ t ≤ T ), let Â0

1 and Â0
2 be the first and 2 : (L + 1)th columns of matrix Â0 respectively.

Then for any invertible matrix D ∈ RL×L, ((Â0
1, Â

0
2D), D−1Ẑt, 1 ≤ t ≤ T ) is also a solution. However

for Ẑ0 = (Ẑ0
1 , Ẑ

0
2 , ..., Ẑ

0
T ), the product Â0

2Ẑ
0 is unique. Finding minh(A, z1, z2, ..., zT ) is non-trivial,

since it involves a fourth-order problem. In practice, one may follow a Newton-Raphson method

proposed in Park et al. (2009).

Step 2. Let H = (H1, H2, ..., HM), F = (F1, F2, ..., FM) be the coefficient matrices, τ be the change point.
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Consider

Ŝ(τ,H, F ) =
T∑
t=1

∣∣Ẑt − B(H)Ẑt1t≤τ − B(F )Ẑt1t>τ
∣∣2
2
. (2.5)

Let (τ̂ , Ĥ, F̂ ) be the minimizer for Ŝ(τ,H, F ) as the estimates of the parameters. Denote V̂τ =

minH,F Ŝ(τ,H, F ). Then τ̂ = argminτ V̂τ , and (Ĥ, F̂ ) = argminH,F Ŝ(τ̂ , H, F ).

Remark 2. The detailed numerical implementation and the selection of the number of factors will be

discussed in Section 4.

3 Theoretical Results

In this section, we provide consistency results for the parameters of interest, in addition the distribu-

tion theory is provided to facilitate making inference on the breakpoints. We consider min(N, T ) → ∞

asymptotically. The relative rate of N, T is discussed in Remark 5. First we list a few assumptions.

3.1 Assumptions

ASSUMPTION 3.1. (Properties of εt) Assume that the noise vectors in our SBDSFM εt, 1 ≤ t ≤ T,

satisfy the MA(∞) model in (2.2) with the innovation sequence (ηi,j) and coefficient matrices (Bi).

Moment. Let (ηi,j) be i.i.d. random variables with zero mean and finite qth moment, q ≥ 4, i.e.

‖η1,1‖q = E(|η1,1|q)1/q <∞. Denote µr = ‖η1,1‖r, for any r ≤ q.

Dependence strength. Assume for some constants cB > 0, βB > 1 + 1/q, we have |Bk|2 ≤ cB(k ∨ 1)−βB ,

where recall that | · |2 represents the spectral norm of a matrix, k ≥ 0.

ASSUMPTION 3.2. (Basis function) For 1 ≤ t ≤ T , assume Xt,i, i = 1, ..., N are i.i.d random

variables, independent of εt and εt. Assume that basis functions φj, j = 1, ..., J, are bounded in absolute
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value by cφ <∞, and

lφ ≤ λmin(Eφ(Xt,1)φ(Xt,1)>) ≤ λmax(Eφ(Xt,1)φ(Xt,1)>) ≤ uφ,

where lφ, uφ > 0 are some finite constants, and recall that φ(Xt,1) is a J ×1 vector of basis function values.

ASSUMPTION 3.3. (Properties of εt (innovations of Zt)) Assume εt, t ∈ Z, are i.i.d random vectors

in RL with zero mean and max1≤i≤L ‖ε0,i‖q′ < ∞, for some q′ ≥ 4. And (εt) are independent of (εt). For

the covariance matrix Σε = E(ε0ε
>
0 ), assume lε = λmin(Σε) > 0.

Note when εt,i are i.i.d for different 1 ≤ i ≤ L, with zero mean and variance σ2, then Σε = σ2IL and

lε = σ2.

ASSUMPTION 3.4. Assume for some 0 < c < 1/2, both τ �/T and (T − τ �)/T are greater than c.

ASSUMPTION 3.5. (AR coefficients of Zt) Assume there exists some invertible matrix H such that

for coefficients E = (E1, E2, ..., EM), Ẽ = (Ẽ1, Ẽ2, ..., ẼM),

(i)
∑M

i=1 |HEiH−1|2,
∑M

i=1 |HẼiH−1|2 ≤ γe < 1, for some constant γe > 0.

(ii) δe = |E − Ẽ|2 > 0 and δeT
1/2 →∞.

Under Assumption 3.5 (i), both I − B(E) and I − B(Ẽ) are invertible. Let

Z(l)
t = (I − B(E))−1εt, Z(r)

t = (I − B(Ẽ))−1εt and Zt = Z(l)
t 1t≤τ� + Z(r)

t 1t>τ� . (3.1)

Thus Z(l)
t (resp. Z(r)

t ) is stationary and satisfies the iteration Z(l)
t = B(E)Z(l)

t +εt (resp. Z(r)
t = B(Ẽ)Z(r)

t +

εt).

Assumption 3.5 (ii) assures the patterns of the time series before and after the change point are different

and δe represents the magnitude of the difference. We allow δe to go to 0, when there is no structural break

and the model boils down to the stationary DSFM. Denote covariance matrices

W1 = EZ(l)
0 Z

(l)>
0 , W2 = EZ(r)

0 Z
(r)>
0 and W0 = T−1

T∑
t=1

EZtZ>t = W1τ
�/T +W2(T − τ �)/T. (3.2)
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For RLM vectors

ξ
(l)
t = (Z(l)>

t−1 ,Z
(l)>
t−2 , ...,Z

(l)>
t−M)>, ξ

(r)
t = (Z(r)>

t−1 ,Z
(r)>
t−2 , ...,Z

(r)>
t−M)>,

define the RLM×LM matrices

Σ(l) = Eξ(l)
0 ξ

(l)>
0 and Σ(r) = Eξ(r)

0 ξ
(r)>
0 , (3.3)

which capture the autocovariance of Zt up to Mth lag, beyond that the covariance is 0.

Remark 3. It is worth noting that under Assumption 3.3 and 3.5 (i), we have the positive definiteness of

W0, Σ(l) and Σ(r),

(i) for matrix W0 defined in (3.2),

λmin(W0) ≥ lε, (3.4)

(ii) for matrices Σ(l) and Σ(r) defined in (3.3),

λmin(Σ(l)), λmin(Σ(r)) > 0.

2

Proof of Remark 3. Part (i) is due to the fact that both λmin(W1) and λmin(W2) are greater than lε.

Note (I − B(E))−1 = I + f1B
1 + f2B

2 + ..., where fis are matrices depending on Ei. Since εt are i.i.d.,

EZ(l)Z(l)> = Σε +
∑

i≥1 fiΣεf
>
i and thus λmin(W1) ≥ λmin(Σε) ≥ lε. Same arguments can be applied for

W2.

For part (ii), let x = (x>1 , x
>
2 , ..., x

>
M)>, with xi ∈ RL and |x|22 = 1. Denote i∗ as the largest i such that

xi 6= 0. Since Z
(l)
i = εi +

∑
k≥1Ckεk−i, some matrices Ck, we have

x>Σ(l)x = E(
M∑
i=1

x>i Z
(l)
i )2 = E(x>i∗εi∗ +H)2,

where H =
∑M

i=1

∑
k≥1 x

>
i Hkεi∗−k, for some matrices Hk, which are independent of εi∗ . Hence x>Σ(l)x ≥

lε|xi∗|22 > 0. Same argument can be applied to Σ(r) and we complete the proof.
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ASSUMPTION 3.6. (Loadings) Assume J ≤ c1N
αJ , some αJ < 1/2. For any j ≥ L, there exists

A∗ ∈ RJ×L and βJ > 0, such that,

(i) δJ = supx∈[0,1] |m(x)> − φ(x)>A∗|∞ = O(J−βJ ).

(ii) For A∗2 being the (2 : (L+ 1)) columns of A∗, assume

0 < la ≤ λmin(A∗>2 A∗2) ≤ λmax(A∗>2 A∗2) ≤ ua,

where la, ua are some finite constants.

(iii) Assume that A∗2W0A
∗>
2 has L non-zero distinct eigenvalues and gapL(A∗2W0A

∗>
2 ) ≥ l′a > 0, where

function gapk(A) := min1≤i≤k(λi(A)− λi+1(A)).

This condition states that the factor loadings can be better approximated by basis functions φ(x) as

the number of basis functions J increases. Quantity δJ specifies the approximation speed, which is of some

polynomial order and it is also considered as the order of bias for our semiparametric estimation. We also

require that the decomposition is genuine in the sense that A∗2 always has full column rank by restricting

the minimum eigenvalue of A∗>2 A∗2 to be greater than some positive number.

ASSUMPTION 3.7. (Identification condition) Without loss of generality, let W0 = IL and A∗>2 A∗2 be a

diagonal matrix with distinct diagonal entities.

We shall show that the above conditions can be obtained under Assumptions 3.1-3.6. By assump-

tion 3.6 (iii), there exists an orthogonal matrix Q such that Q>W
1/2
0 A∗>2 A∗2W

1/2
0 Q is diagonal with dis-

tinct diagonal entities. By Remark 3, W0 is invertible. Denote D = Q>W
−1/2
0 . For Z ′t = DZt and

(m′1(·),m′2(·), . . . ,m′L(·)) = (m1(·),m2(·), . . . ,mL(·))D−1, A∗
′

2 = A∗2D
−1 and (2.3) becomes

Z ′t = B(E ′)Z ′t1t≤τ� + B(Ẽ ′)Z ′t1t>τ� + ε′t, t ≥ 1,

where ε′t = Dεt, E
′
i = DEiD

−1 and Ẽ ′ = DẼiD
−1. Then Assumptions 3.1 and 3.2 are unchanged, As-

sumption 3.3 holds in view of Σ′ε = E(ε′tε
′>
t ) = DΣεD

−1 and λmin(DΣεD
−1) > 0. Note for H ′ = HD−1,
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∑M
i=1 |H ′E ′iH

′−1|2 < 1 and thus we have Assumption 3.5. For A∗
′

2 = A∗2D
−1, since λmin(D) > 0, Assumption

3.6 holds. By (3.2), W ′
0 = DW0D

−1 = IL, and we have A∗
′>

2 A∗
′

2 = D−>A∗>2 A∗2D
−1 = Q>W

1/2
0 A∗>2 A∗2W

1/2
0 Q,

which is diagonal, hence Assumption 3.7 holds.

3.2 Estimation Consistency

Next we show theorems regarding parameter consistency. Theorem 1 is concerning the consistency results

of the estimated parameters of SBDSFM, and Theorem 2 is on the consistency of the breakpoint estimate.

We show that the identified object A∗(1, Z>t )> can be consistently estimated. Moreover both the coefficient

matrix A∗2 and the factors Zt can be estimated consistently up to an invertible matrix.

Theorem 1. (Consistency of Â and Ẑt) Under Assumptions 3.1-3.7.

Denote ρ2 = (T + J)(TN)−(1−2/q)log(TN) and assume ρ→ 0. Then

(i) T−1
∑T

t=1 |Â(1, Ẑ>t )> − A∗(1, Z>t )>|22 = OP(ρ2 + δ2
J).

(ii) There exists a matrix DT such that |DT −D∗|F = OP(T−1/2), where D∗ is some diagonal matrix with

diagonal entities either −1 or 1, and

|A∗2D−1
T − Â2|F = OP(ρ+ δJ) and T−1

T∑
t=1

|DTZt − Ẑt|22 = OP(ρ2 + δ2
J).

Remark 4. The rate of Theorem 1 is similar to Theorem 2 in Park et al. (2009). It can be seen that

moment Assumption 3.1 on the innovations ηi,j plays a role in the rate of convergence in Theorem 1. In

particular, a larger value of q means a stronger moment assumption and thus a slower rate of convergence.

2

For the estimation of the break point, we have the following assumption.

ASSUMPTION 3.8. Assume ρ2 + δ2
J = o(T−1).

Remark 5. Let N � T r. Then under Assumption 3.6 (i), Assumption 3.8 holds if

r > max{1/(2αJβJ), (q + 2)/(q − 2), 2/(q − 2− αJq)}.

11



Recall that J = O(NαJ ) and δJ = N−αJβJ . This condition assumes a larger rate of N than T , as r > 1.

Also the rate of N interplays with q regarding the moment assumption, the number of basis functions and

the bias δJ . 2

Next we provide a theorem on the consistency of the change point estimate.

Theorem 2. (Consistency of τ̂) Under Assumptions 3.1-3.8. For δe fixed or δe → 0 and T 1/2δe →∞, we

have |τ̂ − τ �| = OP(δ−2
e ).

The statement implies that T−1|τ̂ − τ �| → 0 in probability. The rate of consistency is determined by

the magnitude of the change δe.

3.3 Asymptotic Distribution

In this subsection, we show the distribution theory of the estimated coefficient matrix within regime and

the change point estimate. For matrix A ∈ Rm×n, denote vect(A) = (A>1 , A
>
2 , ..., A

>
m)>, where Ai =

(Ai,1, Ai,2, ..., Ai,n)> is the ith row of matrix A.

Define the block matrix D̃T = IM ⊗ DT where ⊗ is denoted as the Kronecker product between two

matrices. Define the true coefficient matrix scaled by DT and D̃T as H� = DTED̃
−1
T , F � = DT ẼD̃

−1
T .

Define that Σε,i,j is the i, j th entry of Σε in Assumption 3.3, and Σ(l) is defined in (3.3). The asymptotic

normality of the estimated coefficient matrices is shown below.

Theorem 3 (Central limit theorem for within regime parameters). Under Assumptions 3.1-3.8. Let

Θ(l) = (N
(l)
i,j )1≤i,j≤L where N

(l)
i,j ∈ RLM×LM with N

(l)
i,j = Σε,i,jΣ

(l)−1, and let Θ(r) = (N
(r)
i,j )1≤i,j≤L with

N
(r)
i,j = Σε,i,jΣ

(r)−1. Then

τ �1/2vect(D−1
T (Ĥ −H�)D̃T )⇒ N(0,Θ(l))

and

(T − τ �)1/2vect(D−1
T (F̂ − F �)D̃T )⇒ N(0,Θ(r)).
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Remark 6. The rate of convergence depends on the number of observations available within each regime,

and the asymptotic efficiency of the estimation is related to the auto-covariance structure of the process

Zt. 2

Then we provide a theorem on the asymptotic distribution of the change point estimate τ̂ . Considering

the type of contiguous asymptotics, where δe tends to zero in the limit. We show that the loss function for

estimating the change point can be approximated by a two-sided Brownian motion with a triangular drift.

Theorem 4. (Asymptotic distribution of τ̂) Under Assumptions 3.1-3.8 and additionally δe → 0. Let

Q(l) = δ−2
e (E − Ẽ)Σ(l)(E − Ẽ)> and Q(r) = δ−2

e (E − Ẽ)Σ(r)(E − Ẽ)>. Then

τ̂ − τ � ⇒ argminsH(s),

where H(s) =

−tr(Q
(l))s+ 2tr1/2(Q(l)Σε)W1(−s), if s ≤ 0,

tr(Q(r))s+ 2tr1/2(Q(r)Σε)W2(s), if s > 0,

where W1(·) and W2(·) are independent standard Wiener processes.

Remark 7. For the change point detection in a univariate regression model, Bai (1997) provides a similar

type of consistency and asymptotic normality results. In our setup, we consider a VAR model with a

structural break, and Ẑt is with generated error from our semiparametric estimation. 2

From the above theorem, with estimates of tr(Q(l)), tr1/2(Q(l)Σε), tr(Q(r)) and tr1/2(Q(r)Σε), we can

construct a 100(1− α)% confidence interval for τ̂ :

[τ̂ − bq̂1−α/2c − 1, τ̂ + bq̂α/2c+ 1], (3.5)

where q1−α/2 (qα/2) is 1− α/2 (α/2)th quantile of argminH(s), and q̂α/2(q̂1−α/2) is a estimate.

Denote ql = tr(Q(l)), σl = 2tr1/2(Q(l)Σε), qr = tr(Q(r)) and σr = 2tr1/2(Q(r)Σε). Let θ1 = ql/σl

(qr/σr) for t ≤ 0 (t > 0) and θ2 = qrσl/σ
2
r (qlσr/σ

2
l ) for t ≤ 0 (t > 0). Denote

F (s, θ1, θ2) = (2π)−1/22θ1s
1/2exp(−θ2

1s/2)− (2θ2
1x+ [θ2

1 + 2θ2
2 + 2θ1θ2]/[θ2(θ1 + θ2)])Φ(−θ1s

1/2)

+(θ1(θ1 + 2θ2))/(θ2(θ1 + θ2))exp{2θ2(θ1 + θ2)s}Φ(−(θ1 + 2θ2)s1/2).

13



Then according to Stryhn (1996), the distribution function of argminsH(s) is of the following form.

F (s) = −F (|s|, θ1, θ2), s ≤ 0,

F (s) = 1 + F (|s|, θ1, θ2), s > 0.

4 Simulation

In this section, we run simulations under different settings to evaluate our model performance. Firstly, we

suggest an algorithm for our estimation:

Initial Value Selection Ẑ0 and Â0. Denote Ψt
def
= (ml(Xi,t))1≤i≤N,1≤l≤L. The initial estimation of

Z(T × L) and A(J × L) can be obtained as follows.

Step 1 We estimate firstly Γt
def
= A(1, Z>t )> and let Γ̂0

t = argminΓS(Γ) = |Yt−Φ(Xt)Γ|22 = |Yt−Φ(Xt)A(1, Z>t )>|22 =

{Φ>(Xt)Φ(Xt)}−1Φ>(Xt)Yt. Define Γ̂0 = (Γ̂0
1, Γ̂

0
2, · · · , Γ̂0

T )J×T .

Step 2 Denote the condensed svd of Γ̂0 as Γ0 = Û0Λ̂0V̂ >0, where Λ̂0 = diag(λ̂0
1, λ̂

0
2, ..., λ̂

0
L) (The first L

largest singular values.) and λ̂0
1 ≥ λ̂0

2 ≥ ... ≥ λ̂0
L. Set Ẑ0 = Λ̂0V̂ 0>, and A0 = Û0.

Step 3 Select the number of factors according to a BIC or AIC criteria.

The initial step is a projection based approach. The number of factors is prefixed by the initial selection

stage. We focus on the cases of having the minimum fixed number of factors following the parsimonious

principle (taking the minimum of BIC and AIC).

Iteration and Change Point Next, we show that given Ẑ0 and Â0, we can further obtain an estimate

as follows.
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Step 1 Given the estimates Â0 and Ẑ0, one can iterate between the estimation of A and Z
def
= (Z1, Z2, · · · , ZT )

following the loss:

argminA,Z
∑
t

|Yt − Φ(Xt)A(1, Z>t )>|22. (4.1)

Step 2 Â gives us estimates of factors loadings m̂l(·).

Step 3 Assuming Zts follows a SBVAR process in (2.3), plug in (4.1).

Step 4 Apply a binary segmentation algorithm as in Scott and Knott (1974) for estimating the single break

τ , namely by minimizing

argminτ,H,FS1:τ (H) + S(τ+1):n(F ). (4.2)

To set up the simulation, the following data generating processes are taken,

Yi,t = m0(Xi,t) +
∑
l

Zl,tml(Xi,t) + σεit, (4.3)

N, T have the following cases T = 50, 100, 200, 250, N = 50, 100, 200, 300. Each element of Xit is taken

to be uniformly distributed over [−3, 3]. Let m0(x1, x2) = 0. The ml(·, ·)s are taken to be

m1(x1, x2) = 1(x1 < a1, x2 < a2){(9.45((x1 − 0.5)2 + (x2 − 0.5)2)− 1.6)/30}

+ 1(x1 ≥ a1, x2 ≥ a2){(2.45((x1 − 0.5)2 + (x2 − 0.5)2)− 1.6)/30},

m2(x1, x2) = 3 sin(0.5πx2)1(x1 < b1, x2 < b2)

+ sin(0.7πx2)1(x1 ≥ b1, x2 ≥ b2),

where a1, a2, b1, b2 are taken to be either 0.5 or 0.7.

The time series {Zt} is taken to be a SBVAR process as in (2.3),

with E = [0.5,−0.2, 0; 0, 0.8, 0.1; 0.1, 0, 0.6], and Ẽ = [0.5,−0.2, 0; 0, 0.8, 0.1; 0.1, 0, 0.6]. And εtls are either

i.i.d. normal random variables with standard deviation 0.001 before the break and 0.01 after the break

or variables following t location scale distributions with mean zero and the same variances (5 degree of

freedom). The true break point τ is taken to be [T/2] or [T/4]. In addition, εits are set to be i) independent
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standard normal noise processes N(0, 0.1), ii) independent ARMA(1,1) processes, εit = 0.5εi(t−1) + ηit +

0.5ηi(t−1), where ηit and ηi(t−1) are normal random variables of N(0, 0.1).

The simulation setup is to account for different types of signal to noise ratios for different values of σ, in

particular σ1 = 0.1 or σ2 = 0.01. In addition, we allow for the serial correlations for the error processes εits

by case ii). Figure 1 presents the ml(·, ·) function under the case of T = 200, N = 200, a1 = 0.5, a2 = 0.5,

b1 = 0.5, b2 = 0.5. Figure 2 shows the plots of the simulated two factors and the estimated confidence

intervals, with a change point at 100, one can observe a switching of the variances of the factors.

For the estimation of basis functions we consider the tensored quadratic B splines keeping to be the same

within the regions defined according to a1, a2, b1 and b2. By Theorem 1, the covariance structure of Ẑt is

identified up to an invertible matrix DT . Denote the centered Ẑt,c as Ẑt,c = Ẑt−T−1
∑T

t=1 Ẑt, the estimated

D̂T can be the solution to minimize
∑

t |Ẑt,c − DTZt,c|22, which is D̂T = (
∑

t Zt,cZ
>
t,c)
−1(
∑

t Zt,cẐt,c). We

work with the transformed estimate Z̃t = D̂−1
T Ẑt. We define a measure of the scale differences between the

estimated covariance matrix and the true one.

ef = | 1√
T
{

T∑
t=1

(Z̃t − ¯̃Z)(Z̃t − ¯̃Z)> −
T∑
t=1

(Zt − Z̄)(Zt − Z̄)>}|2 (4.4)

For evaluating the accuracy of the estimation, the confidence intervals of the estimated change point

as in (3.5) is implemented and Table 1 reports the estimated coverage probabilities over 1000 samples in

different simulation scenarios. Also Table 2 presents the explained variances of fitted model and ef .

The estimation errors appear to be moderate across different estimation cases. In particular, they are

robust against different error distributions, innovations processes and signal to noise ratios. Moreover, we

have also shown good recovery rates of the break point over time. When the sample size increases, one

sees a tendency of an overall better performance.
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Figure 1: Plot of true loading functions with T = 200, N = 200, a1 = 0.5, a2 = 0.5, b1 = 0.5, b2 = 0.5.
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Figure 2: Plot of simulated normalized true factors with T = 200, N = 200, break point τ = 100(cyan).

Estimated break point τ̂ = 103(black), and estimated confidence region [99, 107](dotted grey).

17



Table 1: The coverage probability is ×102, G denotes normal innovations and T denotes t location scale

distributions (with 5 degree of freedom) innovations, τ = [T/2] or [T/4]. Average over 1000 samples.

α = 0.05. 50, 100 means N = 50, T = 100, and the same for others.

50, 100 100, 50 200, 200 300, 250

i) σ1 G [T/2] 60.1 64.2 76.3 77.8

[T/4] 62.1 63.3 73.3 78.2

T [T/2] 58.7 61.9 74.7 74.8

[T/4] 64.3 65.5 71.4 76.8

σ2 G [T/2] 72.3 74.6 84.2 87.8

[T/4] 69.2 68.2 83.1 84.6

T [T/2] 66.1 62.1 75.7 85.5

[T/4] 67.1 69.2 75.1 84.6

ii) σ1 G [T/2] 59.6 64.0 75.8 75.2

[T/4] 59.3 61.8 74.2 73.8

T [T/2] 58.3 56.2 74.8 77.8

[T/4] 59.9 59.2 75.5 78.8

σ2 G [T/2] 69.1 72.5 83.3 85.8

[T/4] 69.3 68.6 79.2 84.2

T [T/2] 65.1 64.2 73.9 83.1

[T/4] 56.3 63.1 77.3 82.6
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5 Application

5.1 Minimum Wage Dataset for China

We consider a Chinese minimum wage dataset. It is collected from 1992 to 2012 for 346 counties over China

and the corresponding Chinese regional economic statistics. The data source is the ministry of Human

Resources and Social Security, and the China academy of Labor and Social Security. For more detailed

descriptions, please refer to Huang et al. (2014). The minimum wage is set upon by the local government

and the levels of the minimum wage may vary within a province. It is also known that it seems that after

2003, some changes has been made for the minimum wage adjustment policy. The dataset is matched

with another one measuring a regional economic situation, namely Chinese Statistical Year Book of China

National Knowledge Infrastructure.

The interesting question is to check the geographic heterogeneity of the minimum wages policy. Espe-

cially for the economics developed counties around the Pearl River Delta to the Yangtze River Delta, the

minimum wage would considerably be different from the other regions. Thus one would also be interested

in modeling the location difference for the regions populated with minorities, such as Xinjiang or Tibet.

It is in general a difficult task to jointly analyze the time changing policy effect and the geographical

discrepancy.

Therefore we apply our estimation procedure as in Section 4. Ytj is taken to be the minimum wage over

year. Xtj1 is taken to be the difference of the countywise gross value added which measures the regional

economics indicator, and Xtj2 is taken to be scaled regional postal code. Figure 3 is from Huang et al.

(2014), showing snapshots of geographical distribution of minimum wage over years. One sees that there

are time changes and location discrepancies for the minimum wage policy in China. Figure 4 presents the

estimated location loading functions on the left panel. And the fitted time varying factors with estimated

breakspoints, and confidence intervals. The estimated structural changes for the two factors are closed to

the year 2003.
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Figure I: Spatial Variation of County Minimum Wages, 2001–06

The following figures show the spatial distribution of counties at different quartiles of their
minimum wages. The years shown here are from 2001 to 2006. The minimum wage is measured
by the end-of-year monthly minimum wage. Counties are grouped according to the quartile
that their minimum wages is attributed at the national level. Darker color represents a higher
quartile level of minimum wages.
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Figure 3: Graphical distribution of the minimum wage in China.
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Figure 4: Plot of estimated ml(·) functions and estimated Zt, Y: minimum wage on X1: first difference of

county level gross value added and X2: city code. Break point τ̂ = 2005, and its confidence interval (dashed

grey). Regional cutoff to isolate regions populated with ethnic minorities, Tibet, Xinjiang, Qinghai and

Gansu and the economics developed regions.
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5.2 Limit Order Book Volume Dataset

In this subsection, we illustrate our methodology using a limit order book dataset. For a specific stock,

the limit order book is about the volume of pending buying or selling orders at certain price levels. Prices

for the asset under consideration reflects a snapshot of the stock’s demand and supply curves. The data

are collected at the NASDAQ stock market, and are collected at a 60 seconds frequency. The data source

is from LOBSTER (lobsterdata.com), see Härdle et al. (2012) and Mihoci (2017) for more details on the

data.

We consider a 60-second frequency over day. Normal trading activities take place continuously on all

stocks between 9:30 a.m. and 4:00 p.m from Monday to Friday in NASDAQ with totally 390 observations.

For illustration, we take one-day trading price as an example for four companies, namely, Amazon, Face-

book (on Sep 9th, 2016) AT&T and Tesla on (June 1st, 2016). To show the data structure, the number

of shares for the four stocks at time 10:00 am and 10:30 am are plotted in Figure 5. In each minute, five

price levels are collected both from the bid and the ask side, with the first one being the lowest sell price

and the last one being the highest sell price. As an example, at 10:00am and 216.78 USD(second best ask

price), the trading volume is 1798 on June 1st, 2016 for Tesla.

Our Ytj is the trading volume at tth minute and jth price level, and Xtj is the ordered relative price

level. As we measure the spread in relative terms, on the bid side, the price levels Xtj is divided by the

highest bid price while on the ask side, the price levels Xtj are divided by the lowest price on the ask side.

As we work with relative prices levels, we do not consider to model the relative shift of the level of the

curve. The connection point of the bid and ask curve are thus at a fixed point.

In Figure 7 and 8, we show the m̂l(·)s (l = 1, 2) estimated with and without discontinuity. Note that

the relative price level is considered and therefore the break point for m̂ functions is always set to 0. m1(·)

represents the average level of trading volume in relationship to the relative to the price level, and m2(·)

corresponds more to the higher order structure of the curves. And we also notice that the estimates with

embedded discontinuity in 0 are quite different from the estimation without it. In Figure 6, the estimated

two factors are plotted. We also plot the estimated breakpoint and the confidence interval built around it.
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Figure 5: Plot of raw data for different companies at 10:00am (solid line), 10:30 am(dotted line), on the

bid side
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(b) Tesla

0 50 100 150 200 250 300 350 400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) Facebook

0 50 100 150 200 250 300 350 400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Amazon

Figure 6: Plot of two factors and their estimated break points(black lines), and their confidence intervals.

It is worth noting that the change-point happens at different time point for different stocks, and the width

of the confidence interval also varies. This is due to stock specific latent trading dynamics. For AT&T, the

change-point is detected at 14 : 40, with a interval of 42 minutes; Tesla switches its latent trading pattern

at 10 : 40, with a small 4− minute interval; for facebook, a change happens at late 15 : 35 with a 10−

minute length of confidence interval; a change-point is detected for Amazon at 12 : 26 with a 18−minute

interval.
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Figure 7: Plot of estimated loading functions m̂1(·) (left) and m̂2(·) (right, no break point)
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Figure 8: Plot of estimated loading functions m̂1(·) (left) and (with break point)
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6 Conclusion and Further Work

In this paper we propose a dynamic semiparametric factor model with a common structural break. This

approach contributes to the literature on change-point analysis in high dimensional time series. We show

good empirical performance in simulations and applications. We provide results on parameter consistency

and we establish the asymptotic distribution of the estimated change point. Regarding future work,

extending the current model to study multiple change points is a very interesting topic. Besides, considering

the selection of the number of factors using a l−1 regularization is another interesting direction to pursue.

7 Appendix

Notation. For two matrices G = (Gi,t), H = (Hi,t) ∈ RN×T , define

〈G,H〉 = (TN)−1

T∑
t=1

N∑
i=1

Gi,tHi,t and |G|2G = 〈G,G〉.

Let ε′t, t ≥ 1, be an i.i.d. copy of εt, t ≥ 1. Let

Ft = (εt, εt−1, ...) and Ft,{t−k} = (εt, ..., εt−k+1, ε
′
t−k, εt−k−1, ...).

For any random variable ξt = H(Ft), denote ξt,{t−k} = H(Ft,{t−k}). Let c1, c2, ... be constants that do not

depend on T,N, J, which may change from lemma to lemma. We adopt the functional dependence measure

introduced by Wu (2005), i.e. ‖ξt − ξt,{0}‖q, which measures the effect of ε0 on the observation t.

7.1 Some useful lemmas

Lemma 1 (Weyl’s inequality). Assume symmetric matrices Σ,Σ′,∆ ∈ RL×L, with Σ = Σ′+∆, eigenvalues

λ1 ≥ λ2 ≥ ... ≥ λL, λ
′
1 ≥ λ′2 ≥ ... ≥ λ′L and d1 ≥ d2 ≥ ... ≥ dL respectively. Then

λ′i + dL ≤ λi ≤ λ′i + d1.

As a result |λi − λ′i| ≤ |∆|2.
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Lemma 2 (Davis-Kahan’s sin θ theorem). Let Σ, Σ′ be symmetric matrices in RL×L, with eigenvalues

λ1 ≥ λ2 ≥ ... ≥ λL and λ′1 ≥ λ′2 ≥ ... ≥ λ′L respectively. Let vj and v′j be the corresponding eigenvectors

for λj and λ′j respectively. If v>j v
′
j ≥ 0, then

|vj − v′j|2 ≤
21/2|Σ− Σ′|F

min{|λj − λ′j+1|, |λj − λ′j−1|}
.

Lemma 3 (Theorem 1 in El Machkouri et al. (2013)). Denote Yi = f(Fi), where f is some measurable

function. Let Sn =
∑n

i=1 Yi, and δi,q = ‖Yi − Yi,{0}‖q. If E(Xi) = 0,
∑

i≥0 δi,q < ∞, some q ≥ 2, and

σ2
n := E(S2

n)→∞, then

σ−1
n Sn ⇒ N(0, 1).

Lemma 4. Followings are some useful properties for Zt and Zt. Assume conditions 3.3, 3.5 and 3.7. Then

(i) For some constant c1 > 0, ‖|Zt − Zt|2‖q′ ≤ c1γ
t/M
e , t ≤ τ �, and ‖|Zt − Zt|2‖q′ ≤ c1γ

(t−τ�)/M
e , t > τ �.

Hence
∑T

t=1 ‖|Zt −Zt|2‖q′ <∞ and ‖|Zt|2‖q′ ≤ c2, where c2 = c1 + ‖|Z1|2‖q′ + ‖|Zτ�+1|2‖q′ <∞.

(ii) Let δ
(l)
t := ‖|Z(l)

t − Z
(l)
t,{0}|2‖q′ and δ

(r)
t := ‖|Z(r)

t − Z
(r)
t,{0}|2‖q′ , then δ

(l)
t ≤ c3γ

t/M
e and δ

(r)
t ≤ c3γ

t/M
e ,

some constant c3 > 0.

(iii) Recall W0 = IL. Then

|ZZ>/T − IL|F = OP(T−1/2). (7.1)

Proof. Part (i). First assume
∑M

i=1 |Ei|2 ≤ γe < 1. Then for t ≤ τ �

‖|Zt −Zt|2‖q′ ≤ γe max
t−M≤s≤t−1

‖|Zs −Zs|2‖q′ . (7.2)

Let C = max{‖|Zs−Zs|2‖q′ , s = 0,−1, ...,−M +1}. We prove the argument by induction, if for any s < k,

we have ‖|Zs −Zs|2‖q′ ≤ Cγ
s/M
e , then for s = k, by (7.2) we have ‖|Zk −Zk|2‖q′ ≤ Cγeγ

k−M/M
e = Cγ

k/M
e .

Hence ‖|Zt−Zt|2‖q′ ≤ Cγ
t/M
e . Similar argument can be applied for t > τ �. By assumption 3.5, there exists

a matrix H, such that
∑M

i=1 |HEiH−1|2 ≤ γe and HZt = B(HEH−1)HZt+Hεt. Hence by above argument,

‖|HZt −HZt|2‖q′ ≤ Cγ
t/M
e . Since |H−1|2 is finite and |Zt − Zt|2 ≤ |H−1|2|HZt −HZt|2, we complete the

proof.
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Part (ii). Note Z
(l)
t,{0} = B(E)Z

(l)
t,{0} + εt,{0}. Hence

δ
(l)
t ≤ γe max

t−M≤s≤t−1
δ(l)
s , t ≥ 1, and δ

(l)
0 = ‖|ε0 − ε′0|2‖q′ . (7.3)

Then same argument as in Part (i), we have δ
(l)
t ≤ c3γ

t/M
e , where c3 = 2‖|ε0|2‖q′ < ∞. Similarly we have

δ
(r)
t ≤ c3γ

t/M
e .

Part (iii). Define Z = [Z1, · · · , ZT ]. Note ZZ> =
∑τ�

t=1 ZtZ
>
t +

∑T
t=τ�+1 ZtZ

>
t =: I1 + I2. Thus by Part (i),

|I1 −
τ�∑
t=1

ZtZ>t |2 = OP(1) and |I2 −
T∑

t=τ�+1

ZtZ>t |2 = OP(1). (7.4)

For any 1 ≤ i, j ≤ L, we have

‖P0(Zt,iZt,j)‖q/2 ≤ ‖Zt,i‖q′‖Zt,j −Zt,j,{0}‖q′ + ‖Zt,i − Zt,i,{0}‖q′‖Zt,j‖q′ .

Hence Lemma 3 implies τ �−1/2
∑τ�

t=1(Zt,iZt,j −W1,i,j)⇒ N(0, 1). Thus |
∑τ�

t=1(ZtZ>t −W1)|F = OP(τ �1/2).

Similarly we have |
∑T

t=τ�+1(ZtZ>t −W2)|F = OP((T − τ �)1/2). Let Z be Z with Zt replaced by Zt. Since

τ � � T and T − τ � � T, for W0 = τ �/TW1 + (T − τ �)/TW2,

|ZZ>/T −W0|F = OP(T−1/2).

Together with (7.4), we complete the proof.

Lemma 5. For some constants αJ , αT > 0, assume J = O(NαJ ), T = O(NαT ) and Assumption 3.2, then

with probability 1− exp(−cN1−2αJ ), some c > 0, we have

lφ/2 ≤
1

N
min

t=1,...,T
λmin

(
Φ(Xt)

>Φ(Xt)
)
≤ 1

N
max
t=1,...,T

λmax

(
Φ(Xt)

>Φ(Xt)
)
≤ 2uφ. (7.5)

Proof. We shall only show the first inequality, since the third one can be similarly derived. By Weyl’s

inequality (Lemma 1), we have

1

N
min

t=1,...,T
λmin

(
Φ(Xt)

>Φ(Xt)
)

= min
t=1,...,T

λmin

( 1

N

N∑
i=1

φ(Xt,i)φ(Xt,i)
>)

≥ min
t=1,...,T

λmin

(
Eφ(Xt,1)φ(Xt,1)>

)
− max

t=1,...,T

∣∣ 1

N

N∑
i=1

φ(Xt,i)φ(Xt,i)
> − Eφ(Xt,1)φ(Xt,1)>

∣∣
F
. (7.6)

29



Since |φj|∞ is bounded by cφ, by Hoeffding’s inequality

P
(

max
t=1,...,T

∣∣ 1

N

N∑
i=1

[φ(Xt,i)φ(Xt,i)
> − Eφ(Xt,1)φ(Xt,1)>]

∣∣
F
≥ x

)
≤

T∑
t=1

J∑
j1,j2=1

P
(∣∣ N∑

i=1

[φj1(Xt,i)φj2(Xt,i)− Eφj1(Xt,i)φj2(Xt,i)]
∣∣ ≥ Nx/J

)
≤2TJ2exp

(
− Nx2

2J2c4
φ

)
. (7.7)

Assumption 3.2 assumes mint=1,2,...,T Eφ(Xt,1)φ(Xt,1)> ≥ Lφ. Hence by (7.6) and (7.7), the first inequality

of (7.5) holds with probability greater than exp{−L2
φ(8c4

φ)−1N1−2αJ + log(2TJ2)},

7.2 Proof of Theorem 1

Following notation will be used throughout this subsection. For 1 ≤ t ≤ T, let

g(t, x) = φ(x)>A(1, z>t )>,

and g∗(t, x)(resp. ĝ(t, x)) be g(t, x) with A, zt replaced by A∗, Zt (resp. Â, Ẑt). Let

g0(t, x) = m(x)>(1, Z>t )>,

and thus Yt,i = g0(t,Xt,i) + εt,i. Denote N × T matrices Mg = (g(t,Xt,i))1≤i≤N,1≤t≤T , and let ĝ (resp. g∗,

g0) be the same as g with g(t,Xt,i) replaced by ĝ(t,Xt,i) ((resp. g∗(t,Xt,i), g0(t,Xt,i)). For any R > 0,

denote the function class,

G(R) =
{
g(t, x) = φ(x)>A(1, z>t )> : A ∈ RJ×L, zi ∈ Rd, 1 ≤ i ≤ T, |Mg −Mg∗|G ≤ R

}
.

Let the δ-entropy of function class G(R) with respect to the norm | · |G be H(δ,G(R)).

Proof of Part (i). Note that

|Mĝ −Mg∗|2G =
1

NT

T∑
t=1

∣∣∣Φ(Xt)[Â(1, Ẑ>t )> − A∗(1, Z>t )>]
∣∣∣2
2

≥ 1

N
min

t=1,...,T
λmin(Φ(Xt)

>Φ(Xt))
1

T

T∑
t=1

|Â(1, Ẑ>t )> − A∗(1, Z>t )>|22.
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We shall show in Lemma 5 and Lemma 4 that there exists Ω with P(Ω)→ 1, on which

|T−1ZZ> −W0|F = |T−1ZZ> − IL|F ≤ cT−1/2, (7.8)

where c > 0 some constant, and (7.5) hold.

From now on we shall only work on Ω. Then by (7.5) it suffices to show

|Mĝ −Mg∗|2G = OP(ρ2 + δ2
J). (7.9)

Let ε = (εi,t)1≤i≤N,1≤t≤T . Recall h in (2.4). Note (Â, Ẑt, 1 ≤ t ≤ T ) is the minimum point for function

h, thus h(Â, Ẑt, 1 ≤ t ≤ T ) ≤ h(A∗, Zt, 1 ≤ t ≤ T ), which can be rewritten as |Mĝ −Mg0|2G ≤ 2〈ε,Mĝ −

Mg∗〉+ |Mg∗ −Mg0|2G. Therefore

|Mĝ −Mg∗|2G ≤ 2|Mĝ −Mg0|2G + 2|Mg∗ −Mg0|2G ≤ 4〈ε,Mĝ −Mg∗〉+ 4|Mg∗ −Mg0|2G. (7.10)

Since supx |φ(x)>A∗ −m(x)>|∞ ≤ δJ ,

|Mg∗ −Mg0|2G ≤ δ2
J

T∑
t=1

|(1, Z>t )>|22/T = δ2
J(1 + |Z|2F/T ) = OP(δ2

J),

where the last equality is due to (7.8). Hence, it suffices to consider the event 〈ε,Mĝ−Mg∗〉 ≥ |Mg∗−Mg0|2G,

since otherwise |Mĝ −Mg∗|G = OP(δ2
J). Therefore by (7.10),

|Mĝ −Mg∗|2G ≤ 8〈ε,Mĝ −Mg∗〉. (7.11)

We shall then use truncation technique to further deal with |Mĝ − Mg∗|G, specifically: recall βB in

Assumption 3.1, for some m > 0, 1/q < β < βB − 1, let

f(t) = |t|β, if t < 0; f(t) = 1, if t ≥ 0. (7.12)

Denote the truncated error η̃t = (η̃t,1, η̃t,2, ..., η̃t,N) with

η̃t,i = (ηt,i ∧mf(t)) ∨ (−mf(t)). (7.13)
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Then for constant C0 = 21/2cBµ2,

P
(
|Mĝ −Mg∗|G > x

)
≤P
(
|Mĝ −Mg∗ |G > x, |ε|G ≤ C0, max

t≤T,1≤i≤N
|ηt,i| ≤ mf(t)

)
+P(|ε|G > C0) +

∑
t≤T

N∑
i=1

P
(
|ηt,i| > mf(t)

)
=: I1 + I2 + I3.

By Lemma 6, I1 = oP(1) when x ≥ ρm where

ρm = 2(C
1/2
1 ∨ 1)(TN)−1/2(T + J)1/2mlog1/2(TN). (7.14)

By Lemma 7, I2 = O((TN)−1). For I3, by Markov’s inequality,

I3 ≤
T∑
t=0

N∑
i=1

P(|ηt,i| ≥ m) +
∑
t<0

N∑
i=1

P(|ηt,i| ≥ m|t|β) ≤ (1 + qβ(qβ − 1)−1T−1)TNm−qµqq.

Our results follow by choosing m = c(TN)1/q, some constant c large enough.

Lemma 6. Recall definitions of ρm in (7.14). Under assumptions in Theorem 1, we have I1 = oP(1) when

x ≥ ρm.

Proof. We shall work on the event where (7.5) and (7.8) hold. When |ε|G ≤ C0, by Cauchy’s inequality

and (7.11), |Mĝ −Mg∗|G ≤ 8C0. Let S = min{s : 2sx ≥ 8C0} and ε̃t be εt in (2.2) with ηt therein replaced

by η̃t in (7.13). Then

I1 ≤
S−1∑
s=0

P
(
2sx < |Mĝ −Mg∗|G ≤ 2s+1x, |ε̃|G ≤ C0, max

t≤T,1≤i≤N
|ηt,i| ≤ mf(t)

)
≤

S−1∑
s=0

P
(

sup
g∈G(2s+1x)

〈ε̃,Mg −Mg∗〉 ≥ 22s−3x2, |ε̃|G ≤ C0

)
, (7.15)

where the last inequality is due to (7.11). In the following we shall show:

Step 1 : If there exists some constant c0 > 0 independent of T,N, J, w, such that

√
TNw ≥ c0mmax

{∫ R

w/(8C0)

H1/2(u,G(R))du, R
}
,
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then we have

P
(

sup
g∈G(R)

|〈ε̃,Mg −Mg∗〉| ≥ w, |ε̃|G ≤ C0

)
≤ c′0 exp

(
− TNw2

4c
′2
0 m

2R2

)
, (7.16)

where c′0 is independent of T,N, J,m,w.

Step 2 : For some constant C1 > 0 independent of y,N, T, J, we have

H(δ,G(y)) ≤ C1

{
(T + J)log(y/δ)

}
. (7.17)

Step 3 : Applying (7.16) and (7.17) to show that I1 = oP(1) when x ≥ ρm.

Step 1: Since (η̃t,i) are independent and
∑T

t=1 γ
>
t ε̃t =

∑
k≤T

∑T
t=1∨k γ

>
t Bt−kη̃k, by Hoeffding’s inequality,

P
(
|
T∑
t=1

γ>t ε̃t| ≥ w
)
≤ 2exp

{
− w2

2m2
∑

k≤T |
∑T

t=1∨k B
>
t−kγt|22f(k)2

}
. (7.18)

Notice

∑
k≤T

∣∣ T∑
t=1∨k

B>t−kγt
∣∣2f(k)2 =

T∑
t1,t2=1

γ>t1

( ∑
k≤t1∧t2

Bt1−kB
>
t2−kf(k)2

)
γt2 ≤

T∑
t1,t2=1

σt1,t2|γt1|2|γt2|2,

where σt1,t2 =
∑

k≤t1∧t2 |Bt1−k|2|Bt2−k|2f(k)2. For matrix $ = (σt1,t2)
T
t1,t2=1, $ is symmetric with

|$|1 = |$|∞ = max
1≤t2≤T

T∑
t1=1

∑
k≤t1∧t2

|Bt1−k|2|Bt2−k|2f(k)2 ≤ c0c
2
B,

where constant c0 only depends on β, βB. Thus |$|2 ≤ (|$|1|$|∞)1/2 ≤ c0c
2
B. Hence for any vector γt ∈ RN ,

by (7.18)

P
(∣∣ T∑

t=1

γ>t ε̃t
∣∣ ≥ w

)
≤ 2 exp

{
− cβw

2

m2c2
B

∑T
t=1 |γt|22

}
, (7.19)

where cβ only depends on β and βB. Recall Xt,j and Zt are independent of εt, hence entities in Mg∗ is

independent of εt. Therefore result follows by (7.19) and Lemma 3.2 in van de Geer (2000) with W , δ and

ε therein equal ε̃/m, w/m and w/(2m).
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Step 2: By (7.5), G(y) is included in T−1
∑T

t=1 |A(1, z>t )> − A∗(1, Z>t )>|22 ≤ 2y2/lφ, and is further covered

by, {
(A,Z) : |A1 − A∗1|22 ≤ 2y2/lφ, T

−1|A2z − A∗2Z|2F ≤ 2y2/lφ

}
. (7.20)

By (7.8), for all large T , recall that ua is defined in (ii) of Assumption 3.6,

la/2 ≤ T−1|A∗2Z|22 ≤ 2ua. (7.21)

Denote c1 = min{2l′2a /(242ua),
√

2ua}.

If 2y2/lφ ≥ c1, then by (7.20) and (7.21),

T−1/2|A2z|F ≤ T−1/2|A∗2Z|F + (2y2/lφ)1/2 ≤ c2y,

where c2 = (2/lφ)1/2[
√

2Lu2
a/c1 + 1]. Denote the condensed svd T−1/2A2z = UΛV >. Then above indicates

|Λ|F ≤ c2y. Hence G(y) belongs to

{g(t, x) = φ(x)>A(1, z>t )> : |A1 − A∗1|22 ≤ 2y2/lφ, |Λ|F ≤ c2y} (7.22)

By (7.5), for Mg′ equals Mg with A1, A2, z therein replaced by A′1, A
′
2, z
′, and the condensed svd A′2z

′ =

U ′Λ′V
′>,

|Mg −Mg′ |G ≤ 2uφ(|A1 − A′1|22 + |UΛV > − U ′Λ′V ′>|2F )

≤ 2uφ
[
|A1 − A′1|22 + 2(|Λ(V − V ′)>|2F + |Λ− Λ′|2F + |(U − U ′)Λ′|2F )

]
. (7.23)

Therefore by (7.22) and (7.23), the δ entropy for G(y) is of order O((J + T )log(y/δ)).

If 2y2/lφ < c1, then by (7.20) and (7.21)

T−1|A2zz
>A>2 − A∗2ZZ>A∗>2 |F ≤ T−1|A2z − A∗2Z|F (|A2z|2 + |A∗2Z|2) ≤ 6(ua/lφ)1/2y, (7.24)

which is less than l′a/4 due to 2y2/lφ < c1. By (7.8), |T−1A∗2ZZ
>A∗>2 −A∗2W0A

∗>
2 |F ≤ O(T−1/2). Hence for

T large, by (iii) of Assumption 3.6

gapL(T−1A∗2ZZ
>A∗>2 ) ≥ l′a/2 > 0. (7.25)
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By Weyl’s inequality, (7.24) and (7.25),

max
1≤i≤L

|λi(T−1A2zz
>A>2 )− λi(T−1A∗2ZZ

>A∗>2 )| ≤ l′a/4.

Thus by Davis-Kahan sin θ theorem, there exists a condensed svd decomposition T−1/2A2z = UΛV > and

T−1/2A∗2Z = U∗Λ∗V ∗>, such that |U − U∗|F = O(y). Similarly we have |V − V ∗|F = O(y) and by Weyl’s

inequality |Λ− Λ∗|F = O(y). Thus the δ entropy for G(y) is of order O((J + T )log(y/δ)).

Step 3: Let Ψ(y) = mymax{C1/2
1 (T + J)1/2log1/2(28C0/y), 1}. Then

Ψ(y) ≥ mmax
{∫ y

y2/(28C0)

H1/2(u,G(y))du, y
}
,

and Ψ(y)/y2 is a non-increasing on (0, 28C0). For ρm in (7.14),
√
TNρ2

m ≥ Ψ(ρm), when TN ≥ (28C0)2/7.

Hence by (7.16), for any y ≥ ρm and TN ≥ (28C0)2/7,

P
(

sup
g∈G(y)

|〈ε̃,Mg −Mg∗〉| ≥ 2−5y2, |ε̃|G ≤ C0

)
≤ c3 exp

(
− TNy2

4c3m2

)
,

some constant c3 = C
1/2
1 c′0 > 0. Inserting above into (7.15) with x = ρm implies

I1 . exp{−TNρ2
m/(4c3m

2)} = o(1).

Lemma 7. Under assumptions of Theorem 1, we have

P
(
|ε|2G ≥ 2c2

Bµ
2
2

)
≤ c1µ

−4
2 (TN)−1,

where c1 = max
{
µ4

2,Var(η2
1,1)
}
.

Proof. Notice

|ε|2G =
1

NT

∑
k1,k2≤T

η>k1

( T∑
t=1∨k1∨k2

B>t−k1Bt−k2

)
ηk2 .
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Since ηt,j, t, j ∈ Z are i.i.d. with zero mean and |B|2F ≤ N |B|22 for any matrix B ∈ RN×N ,

E|ε|2G = (TN)−1E(η2
1,1)
∑
k≤T

T∑
t=1∨k

|Bt−k|2F ≤ c2
Bµ

2
2,

and

Var
(
|ε|2G
)
≤ c1(TN)−2

∑
k1≤T

∑
k2≤T

∣∣∣ T∑
t=1∨k1∨k2

B>t−k1Bt−k2

∣∣∣2
F
≤ c1c

4
B/(TN).

The desired result follows from Chebyshev’s inequality.

Proof of Part (ii). From Part (i) and (7.8) we have

T−1|A∗ZZ>A∗> − ÂẐẐ>Â>|F ≤ T−1(|A∗Z|2 + |ÂẐ|2)|A∗Z − ÂẐ|F = OP(ρ+ δJ). (7.26)

By Weyl’s inequality with probability tending to 1, min1≤i 6=j≤L+1 |λi(T−1A∗2ZZ
>A∗>2 )−λj(T−1Â2ẐẐ

>Â>2 )| ≥

l′a/4. Recall T−1/2Â2Ẑ = Û Λ̂V̂ >. Denote the condensed svd of T−1/2A∗2Z = U∗Λ∗V ∗>. Thus Davis-Kahan

sin θ theorem implies if U∗>i Ûi > 0, then

|U∗i − Ûi|2 ≤
√

2T−1|A∗ZZ>A∗> − ÂẐẐ>Â>|F/(l′a/4) = OP(ρ+ δJ),

where U∗i and Ûi represent the ith columns of U∗ and Û . That is by choosing the sign for U∗i , we have

|Û − U∗|2F = OP(ρ2 + δ2
J). By Weyl’s inequality and (7.26), we have |Λ̂ − Λ∗|2F = OP(ρ2 + δ2

J). Thus

|Â2 − U∗Λ∗|F = OP(ρ+ δJ) in view of Â2 = Û Λ̂. Hence

|T−1/2Ẑ − V ∗>|F = |(Â>2 Â2)−1Â2(T−1/2Â2Ẑ − Â2V
∗>)|F

≤ |(Â>2 Â2)−1Â2|2(|T−1/2Â2Ẑ − U∗Λ∗V ∗>|F + |U∗Λ∗ − Â2|F ) = OP(ρ+ δJ).

Since T−1/2A∗2Z = U∗Λ∗V ∗>, there exists an invertible matrix DT , such that T−1/2DTZ = V ∗>. S-

ince |T−1ZZ> − IL| = OP(T−1/2), we have P(λmin(DT ) < 1/2) = OP(T−1/2) and thus both |D>TDT −

IL|F ,|DTD
>
T−IL|F equalOP(T−1/2). Since T−1A∗2ZZ

>A∗>2 = U∗Λ∗2U∗>, |A∗2A∗>2 −U∗Λ∗2U∗>|F = OP(T−1/2).

Recall A∗>2 A∗2 is diagonal with non-increasing diagonal entities. Hence by Weyl’s inequality, we have

|A∗>2 A∗2−Λ∗2|F = OP(T−1/2). Note we also have A∗2D
−1
T = U∗Λ∗, then DTA

∗>
2 A∗2 = DTD

>
T Λ∗2DT , and there-

fore |DTA
∗>
2 A∗2 −A∗>2 A∗2DT |F = OP(T−1/2). By assumption A∗>2 A∗2 has distinct diagonal values. Therefore

|DT −D∗|F = OP(T−1/2) where D∗ is a diagonal matrix with entities either −1 or 1.
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7.3 Proof of Theorem 2

We shall only show the case τ < τ � since the other direction can be similarly dealt with. First let us

introduce some notation. For any k1 < k2, let

f(Z, k1, k2) =


Zk1−1 Zk1 . . . Zk2−1

Zk1−2 Zk1−1 . . . Zk2−2

...
...

. . .
...

Zk1−M Zk1−M+1 . . . Zk2−M

 ∈ RLM×(k2−k1+1)

and h(Z, k1, k2) =
[
Zk1 Zk1+1 . . . Zk2

]
∈ RL×(k2−k1+1).

We will need to handle three segments to account for the deviation of our estimated break point and the

true break point τ �, namely 1 : τ , τ + 1 : τ �, τ � + 1 : T . Denote Γ1 = f(Z, 1, τ), Γ2 = f(Z, τ + 1, τ �)

and Γ3 = f(Z, τ � + 1, T ). Let Γi,t be the tth column of Γi, i = 1, 2, 3, and Γi,t,l be the lth coordinate

of Γi,t. Denote ζ1 = h(Z, 1, τ), ζ2 = h(Z, τ + 1, τ �) and ζ3 = h(Z, τ � + 1, T ). Also let Uε1 = h(ε, 1, τ),

Uε2 = h(ε, τ + 1, τ �) and Uε3 = h(ε, τ � + 1, T ). It can be seen that ζ1 = EΓ1 + Uε1 , ζ2 = EΓ2 + Uε2 , and

ζ3 = ẼΓ3 + Uε3 .

Let

S(τ,H, F ) =
τ∑
t=1

|DTZt − B(H)DTZt|22 +
T∑

t=τ+1

|DTZt − B(F )DTZt|22.

Denote Vτ = infH,F S(τ,H, F ) and τ ∗ = argmin1≤τ≤TVτ . Let (Hτ , Fτ ) = argminH,FS(τ,H, F ) and

(H∗, F ∗) = argminH,FS(τ ∗, H, F ). Then τ ∗ is the ideal estimation of the break point with known factors

Zt, and Hτ and Fτ are the parameters associated with τ.

Proof. Recall that the block matrix D̃T = IM ⊗DT . Then for any fixed τ , we have the following solutions

Hτ = DT ζ1Γ>1 (Γ1Γ>1 )−1D̃−1
T and Fτ = DT (ζ2Γ>2 + ζ3Γ>3 )(Γ2Γ>2 + Γ3Γ>3 )−1D̃−1

T . (7.27)

37



Note

Vτ =
τ∑
t=1

|(B(H�)− B(Hτ ))DTZt +DT εt|22 +
τ�∑

t=τ+1

|(B(H�)− B(Fτ ))DTZt +DT εt|22

+
T∑

t=τ�+1

|(B(F �)− B(Fτ ))DTZt +DT εt|22. (7.28)

Then for dt = (B(H�) − B(Hτ ))DTZt, t ≤ τ ; dt = (B(H�) − B(Fτ ))DTZt, τ + 1 ≤ t ≤ τ �; dt = (B(F �) −

B(Fτ ))DTZt, t ≥ τ � + 1, we have

Vτ − S(τ �, H�, F �) ≥ 2
T∑
t=1

(DT εt)
>dt +

τ�∑
t=τ+1

|dt|22 =: 2I1 + I2. (7.29)

By Lemma 8, |I1| = OP(1 + δe(τ
� − τ)1/2) + oP(δ2

e(τ
� − τ)), and by Lemma 9, I2 ≥ c1(1 + oP(1))δ2

e(τ
� − τ),

some constant c1 > 0. Since Vτ∗ ≤ S(τ �, H�, F �), the left hand side of (7.29) should not be positive,

therefore −2I1 should be larger than I2 and thus we have |τ ∗ − τ �| = OP(δ−2
e ).

Now we prove that plugging in estimated Zt would not affect our estimation precision. Recall Ŝ(τ,H, F )

is S(τ,H, F ) with DTZt replaced by Ẑt. Let V̂τ = minH,F Ŝ(τ,H, F ) and (Ĥτ , F̂τ ) = argminH,F Ŝ(τ,H, F ).

Denote

ε̂t =

(I − B(H�))Ẑt = (I − B(H�))(Ẑt −DTZt) +DT εt, if t ≤ τ �

(I − B(F �))(Ẑt −DTZt) +DT εt, if t > τ �.
(7.30)

Let d̂t be dt with Hτ (resp. Fτ , DTZt) replaced by Ĥτ (resp. F̂τ , Ẑt). Then similar to (7.29) we have

V̂τ − Ŝ(τ �, H�, F �) ≥ 2
T∑
t=1

ε̂>t d̂t +
τ�∑

t=τ+1

|d̂t|22 = 2Î1 + Î2.

Let Γ̂i be Γi with Zt therein replaced by D−1
T Ẑt and Ûεi be Uεi with εi replaced by D−1

T ε̂i. By Theorem 1

and Lemma 4,

3∑
i=1

|Γ̂i − Γi|2F =
T∑
t=1

|D−1
T Ẑt − Zt|22 = oP(1) and thus

3∑
i=1

|Ûεi − Uεi |2F = oP(1). (7.31)
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By (7.37), |Γi|F = OP(T
1/2
i ), where

Ti = τ (resp. τ � − τ, T − τ �) for i = 1 (resp. i = 2, 3). (7.32)

Then we have

|ΓiΓ>i − Γ̂iΓ̂
>
i |F ≤ (|Γi|F + |Γ̂i|F )|Γi − Γ̂i|F = oP(T

1/2
i ) and |UεiΓ>i − ÛεiΓ̂>i |F = OP(T

1/2
i ). (7.33)

With above bounds, same order of bounds as in Lemmas 8 and 9 can be obtained for Î1 and Î2. Hence

by the same argument as for τ ∗ case with Zt replaced by D−1
T Ẑt and εt replaced by D−1

T ε̂t, we have

|τ̂ − τ �| = OP(δ−2
e ) in view of V̂τ̂ ≤ Ŝ(τ �, H�, F �).

Lemma 8. Under assumptions of Theorem 2, we have I1 = OP(1 + δe(τ
� − τ)1/2) + oP(δ2

e(τ
� − τ)).

Proof. We shall first show the part τ � + 1 ≤ t ≤ T. Recall H� = DTED̃
−1
T , F � = DT ẼD̃

−1
T and Γ3,t is the

tth column of Γ3. Note ζ2 = EΓ2 + Uε2 and ζ3 = ẼΓ3 + Uε3 . Then for t ∈ [τ � + 1, T ], by (7.27),

dt = DT

[
Ẽ − (ζ2Γ>2 + ζ3Γ>3 )(Γ2Γ>2 + Γ3Γ>3 )−1

]
Γ3,t−τ�

= −DT (Uε2Γ
>
2 + Uε3Γ

>
3 )(Γ2Γ>2 + Γ3Γ>3 )−1Γ3,t−τ� +DT (Ẽ − E)Γ2Γ>2 (Γ2Γ>2 + Γ3Γ>3 )−1Γ3,t−τ� . (7.34)

Consequently

T∑
t=τ�+1

(DT εt)
>dt =− tr

{
DT (Uε2Γ

>
2 + Uε3Γ

>
3 )(Γ2Γ>2 + Γ3Γ>3 )−1Γ3U

>
ε3
D>T
}

+tr
{
DT (Ẽ − E)Γ2Γ>2 (Γ2Γ>2 + Γ3Γ>3 )−1Γ3U

>
ε3
D>T
}

=: −I11 + I12. (7.35)

let Γ̃i be Γi with Zt replaced by Zt in (3.1). Note Uε3Γ̃
>
3 =

∑T
t=τ�+1 εtΓ̃

>
3,t−τ� . Hence for any 1 ≤ i, j ≤ L,

1 ≤ l ≤M, by Lemma 4, δk := ‖εk,iZk−l,j − εk,iZk−l,j,{0}‖q′ = ‖εk,i‖q′‖Zk−l,j −Zk−l,j,{0}‖q′ . γke , k ≥ 1, and

δ0 := ‖ε0,iZ−l,j − ε′0,iZ−l,j‖q′ ≤ 2‖ε0,i‖q′‖Z−l,j‖q′ . 1, where the constant in . is independent of T. Hence∑
k≥0 δk <∞ and

σ2 := E
(
(

T∑
t=τ�+1

εt,iZt−l,j)2
)

= (T − τ �)E(ε2T,i)E(Z2
T−l,j).
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By the CLT in Lemma 3, σ−2
∑T

t=τ�+1 εt,iZt−l,j ⇒ N(0, 1). By Lemma 4,
∑T

t=1 |Zt − Zt|2 = OP(
∑

t≥0 γ
t
e),

hence ‖|Uε3(Γ3 − Γ̃3)>|F‖q′ ≤
∑T

t=1 ‖|εt|2‖q′‖|Zt −Zt|2‖q′ = O(1). Therefore

‖|Uε3Γ>3 |F‖q′ = OP((T − τ �)1/2). (7.36)

Since Γ3Γ>3 =
∑T

t=τ�+1 Γ3,t−τ�Γ
>
3,t−τ� , using the same argument as above leads to

|Γ̃3Γ̃>3 − E(Γ̃3Γ̃>3 )|F ≤
ML∑
i,j=1

∣∣ T∑
t=τ�+1

(Γ̃3,t−τ�,iΓ̃3,t−τ�,j − EΓ̃3,t−τ�,iΓ̃3,t−τ�,j)
∣∣
F

= OP((T − τ �)1/2).

Since E(Γ̃3,tΓ̃
>
3,t) = Σ(r), we have EΓ̃3Γ̃>3 = (T−τ �)Σ(r). Again by Lemma 4, |Γ3Γ>3 −Γ̃3Γ̃>3 |2F ≤

∑T
t=1(|Zt|22+

|Zt|22)|Zt − Zt|22 = OP(1). Therefore

|Γ3Γ>3 − E(Γ3Γ>3 )|F = OP((T − τ �)1/2) and |E(Γ3Γ>3 )− (T − τ �)Σ(r)|F = OP(1). (7.37)

Since λmin(Σ(r)) ≥ c > 0, |(Γ3Γ>3 )−1|2 = OP((T − τ �)−1). Hence by a similar argument for Γ2U
>
ε2

and

Γ2Γ>2 , we have I11 = OP(1). Recall |Ẽ − E|2 = δe. By the same argument as in I11, we have I12 =

OP(δe(τ
� − τ)T−1/2) = oP(δ2

e(τ
� − τ)).

Then we comment on the cases of 1 ≤ t ≤ τ and τ + 1 ≤ t ≤ τ �. Note

τ∑
t=1

(DT εt)
>dt = −tr

{
DTUε1Γ

>
1 (Γ1Γ>1 )−1Γ1U

>
ε1
D>T
}
,

and

τ�∑
t=τ+1

(DT εt)
>dt =− tr

{
DT (Uε2Γ

>
2 + Uε3Γ3)(Γ2Γ>2 + Γ3Γ>3 )−1Γ2U

>
ε2
D>T
}

+ tr
{
DT (E − Ẽ)Γ3Γ>3 (Γ2Γ>2 + Γ3Γ>3 )−1Γ2U

>
ε2
D>T
}
.

Hence similar argument as for
∑T

t=τ�+1(DT εt)
>dt part leads to

∑τ�

t=τ+1(DT εt)
>dt = OP(1 + δe(τ

� − τ)1/2)

and
∑τ

t=1(DT εt)
>dt = OP(1).

Lemma 9. Under assumptions of Theorem 2, we have I2 ≥ c1(1 + oP(1))δ2
e(τ
� − τ), where c1 > 0 only

depending on the largest and smallest eigenvalues of Σ(l), Σ(r) and DT .
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Proof. Similar to dt in (7.34), for t ∈ [τ + 1, τ �] we have

dt = DT (E − Ẽ)Γ3Γ>3 (Γ2Γ>2 + Γ3Γ>3 )−1Γ2,t−τ +DT (Uε2Γ
>
2 + Uε3Γ

>
3 )(Γ2Γ>2 + Γ3Γ>3 )−1Γ2,t−τ .

Hence

I2 ≥ tr
{
DT (E − Ẽ)Γ3Γ>3 (Γ2Γ>2 + Γ3Γ>3 )−1Γ2Γ>2 (Γ2Γ>2 + Γ3Γ>3 )−1Γ3Γ>3 (E − Ẽ)>D>T

}
+ tr

{
DT (E − Ẽ)Γ3Γ>3 (Γ2Γ>2 + Γ3Γ>3 )−1Γ2Γ>2 (Γ2Γ>2 + Γ3Γ>3 )−1(Uε2Γ

>
2 + Uε3Γ

>
3 )D>T

}
=: I21 + I22.

Note for some constant c, C > 0, λmin(Σ(l)), λmin(Σ(r)) ≥ c and λmax(Σ(l)), λmax(Σ(r)) ≤ C. Hence by (7.37)

and a similar argument for Γ2Γ>2 , λmin(Γ2Γ>2 ) ≥ (c+ oP(1))(τ � − τ) and λmin(Γ3Γ>3 ) ≥ (c+ oP(1))(T − τ �).

Since T − τ � � T,

I21 ≥ c1(1 + oP(1))δ2
e(τ
� − τ),

where c1 > 0 only depends on c, C and λmin(DT ). Same as I12 in the proof of Lemma 8, we have I22 =

oP(δ2
e(τ − τ �)).

7.4 Proof of Theorem 3

Proof of Theorem 3. Recall definitions of Hτ and Fτ in Subsection 7.3. We shall show the case τ̂ < τ � and

the other direction can be similarly dealt with.

For Ĥ: we will work on Hτ̂ first, and then show the difference of Hτ̂ and Ĥ is negligible. Let τ = τ̂ in the

construction of Γi and Uεi . Note

D−1
T (Hτ̂ −H�)D̃T = Uε1Γ

>
1 (Γ1Γ>1 )−1. (7.38)

Same argument as (7.37), τ−1Γ1Γ>1 → Σ(l) in probability. For any matrix A ∈ RL×LM with |A|F = 1, we

have

vect(A)>vect(Uε1Γ
>
1 Σ(l)−1) =

τ̂∑
t=1

vect(A)>vect(εtΓ
>
1,tΣ

(l)−1) =:
τ̂∑
t=1

ξt.
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Let ξ̃t ( resp. Γ̃1) be ξt (resp. Γ1) and with Zt replaced by Zt and δt = ‖P0ξ̃t‖q′ . Then

δt ≤ |A|F
∥∥|εt(Γ̃>1,t − Γ̃1,t,{0})Σ

(l)−1|F
∥∥
q′
≤ ‖|εt|2‖q′‖|Γ̃>1,t − Γ̃1,t,{0}|2‖q′|Σ(l)−1|F , t ≥ 1,

and δ0 ≤ ‖|ε0 − ε′0|2‖q′‖|Γ̃>1,1|2‖q′|Σ(l)−1|F . By Lemma 4,
∑T

t=1 ‖|Zt − Zt,{0}|2‖q′ = O(
∑

t≥0 γ
t
e) = OP(1),

hence
∑τ̂

t=1 ‖|Γ̃1,t − Γ̃1,t,{0}|2‖q′ = OP(1) and
∑∞

t=0 δt <∞. By Lemma 3,

τ̂−1/2

τ̂∑
t=1

ξ̃t ⇒ N(0, σ2),

where σ2 =
∑

i∈Z E(ξ̃1ξ̃i) = E(ξ̃2
1). Let Θ := E(vect(ε1Γ̃>1,1Σ(l)−1)vect(ε1Γ̃>1,1Σ(l)−1)>), then σ2 = vect(A)>Θvect(A).

Note Θ = (Ni,j)1≤i,j≤L where Ni,j ∈ RLM×LM with

Ni,j = E
[
(ε1,iΓ̃

>
1,1Σ(l)−1)>ε1,jΓ̃

>
1,1Σ(l)−1

]
= E(ε1,iε1,j)Σ

(l)−1 = Σε,i,jΣ
(l)−1.

Since
∑τ̂

t=1 ‖|ξ̃t − ξt|‖q′ ≤
∑τ̂

t=1 |A|F‖|εt|2‖q′‖|Γ1,t − Γ̃1,t|2‖q′|Σ(l)−1|F = OP(1) and |τ � − τ̂ | = oP(τ �), we

have

τ �−1/2vect(Uε1Γ
>
1 Σ(l)−1)⇒ N(0,Θ).

By (7.38), |D−1
T (Hτ̂ − Ĥ)D̃>T |F ≤ |Uε1Γ>1 (Γ1Γ>1 )−1 − Ûε1Γ̂>1 (Γ̂1Γ̂>1 )−1|F , where Γ̂i (resp. Ûεi) is Γi ( resp.

Uεi) with Zt (resp. εt) replaced by D−1
T Ẑt (resp. D−1

T ε̂t defined in (7.30).) By (7.31), we have |D−1
T (Hτ̂ −

Ĥ)D̃>T |F = oP(T−1/2) and thus the desired result follows.

For F̂ : note

D−1
T (Fτ̂ − F �)D̃T = (ζ2Γ>2 + ζ3Γ>3 )(Γ2Γ>2 + Γ3Γ>3 )−1 − Ẽ

=(E − Ẽ)Γ2Γ>2 (Γ2Γ>2 + Γ3Γ>3 )−1 + (Uε2Γ
>
2 + Uε3Γ

>
3 )(Γ2Γ>2 + Γ3Γ>3 )−1 =: I1 + I2.

By (7.37), |I1|F = OP(δe(τ
� − τ̂)/T ). Then Theorem 2 and δeT

1/2 → ∞ imply |I1|F = OP(δ−1
e T−1) =

oP(T−1/2).

Decompose I2 into

(T − τ �)1/2I2 = (T − τ �)−1/2Uε3Γ
>
3 Σ(r)−1 + (T − τ �)1/2Uε2Γ

>
2 (Γ2Γ>2 + Γ3Γ>3 )−1

+ (T − τ �)−1/2Uε3Γ
>
3 (Γ2Γ>2 + Γ3Γ>3 )−1(Γ2Γ>2 + Γ3Γ>3 − (T − τ �)Σ(r))Σ(r)−1.
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By (7.36), |Uε2Γ>2 |F = OP((τ � − τ)1/2). By (7.37), |(T − τ �)−1(Γ2Γ>2 + Γ3Γ>3 ) − Σ(r)|F = oP(1). By Weyl’s

inequality, with probability tending to 1, the smallest eigenvalue of (T − τ �)−1(Γ2Γ>2 + Γ3Γ>3 ) is lower

bounded by some c > 0. Then we have

|(T − τ �)1/2I2 − (T − τ �)−1/2Uε3Γ
>
3 Σ(r)−1|F = OP((τ � − τ̂)T−1) + oP(1).

By Theorem 2, τ � − τ̂ = O(δ−2
e ) and δ2

eT → ∞, hence right hand side of above equality is oP(1). Same

argument as in Ĥ part, we have

(T − τ �)−1/2vect(Uε3Γ
>
3 Σ(r)−1)⇒ N(0,Θ′),

where Θ′ equals Θ with Σ(l) replaced by Σ(r). Similar as the Ĥ part, we have |D−1
T (Fτ̂−F̂ )D̃T |F = oP(T−1/2)

and we complete the proof.

7.5 Proof of Theorem 4

Proof of Theorem 4. By Theorem 2, |τ̂ − τ �| = OP(δ−2
e ). Hence we shall work on set Ω(m) := {τ : 0 ≤

τ �− τ ≤ mδ−2
e }, some constant m > 0. The other direction τ > τ � can be similarly dealt with. Recall that

Q(l) = δ−2
e (E − Ẽ)Σ(l)(E − Ẽ)>. Define a standard Wiener process on [0,∞) as W (s) for 1 ≤ s ≤ m. The

proof involves the following steps:

Step 1 Show supτ∈Ω(m) |Vτ − Vτ� − tr
{

2(E − Ẽ)Γ2U
>
ε2

+ (τ � − τ)δ2
eQ(l)

}
| = oP(1).

Step 2 For τ = τ � − bδ−2
e sc, 0 ≤ s < m, show

tr
{

(E − Ẽ)Γ2U
>
ε2

}
⇒ tr1/2{Q(l)Σε}W (s).

Step 3 Show supτ∈Ω(m) |Vτ − V̂τ | = oP(1).

Then combining above steps, the desired result follows.
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Step 1. Suppose that we know the true break point, and we denote (H∗�, F ∗�) = argminH,FS(τ �, H, F ).

Let r�t = (B(H�)− B(H∗�))DTZt +DT εt, if t ≤ τ �; r�t = (B(F �)− B(F ∗�))DTZt +DT εt, if t > τ �. Then

Vτ� =
T∑
t=1

|r�t |22.

Recall definitions of Fτ and Hτ in Subsection 7.3. Let d�t = (B(H∗�) − B(Hτ ))DTZt, if 1 ≤ t ≤ τ ;

d�t = (B(H∗�)− B(Fτ ))DTZt, if τ + 1 ≤ t ≤ τ �; d�t = (B(F ∗�)− B(Fτ ))DTZt, if τ � + 1 ≤ t ≤ T. Then

Vτ − Vτ� =
T∑
t=1

|d�t + r�t |22 −
T∑
t=1

|r�t |22 =
T∑
t=1

|d�t |22 + 2
T∑
t=1

r�>t d�t = I1 + 2I2. (7.39)

Part I1. We shall first deal with τ + 1 ≤ t ≤ τ � part. Note

H∗� = DT (ζ1Γ>1 + ζ2Γ>2 )(Γ1Γ>1 + Γ2Γ>2 )−1D̃−1
T = DT

(
E + (Uε1Γ

>
1 + Uε2Γ

>
2 )(Γ1Γ>1 + Γ2Γ>2 )−1

)
D̃−1
T

and

Fτ = DT (ζ2Γ>2 + ζ3Γ>3 )(Γ2Γ>2 + Γ3Γ>3 )−1D̃−1
T

= DT

(
Ẽ + (Uε2Γ

>
2 + Uε3Γ

>
3 + (E − Ẽ)Γ2Γ>2 )(Γ2Γ>2 + Γ3Γ>3 )−1

)
D̃−1
T .

Hence by similar argument as (7.36) and (7.37), we obtain bounds |ΓiΓ>i |2 = OP(Ti), |UεiΓ>i |2 = OP(T
1/2
i )

and |(ΓiΓ>i )−1|2 = OP(T−1
i ), i ∈ {1, 2, 3} and Ti is defined in (7.32). Then

|H∗� − Fτ −DT (E − Ẽ)D̃−1
T |2 = OP(T−1/2 + δe(τ

� − τ)/T ). (7.40)

Thus we have

τ�∑
t=τ+1

|d�t |22 = tr{(H∗� − Fτ )D̃TΓ2Γ>2 D̃
>
T (H∗� − Fτ )>} = tr{DT (E − Ẽ)Γ2Γ>2 (E − Ẽ)>D>T }+ oP(1).

Same argument leads to
∑

τ�+1≤t≤T |d�t |22 = oP(1) and
∑

1≤t≤τ |d�t |22 = oP(1). Since EΓ2Γ>2 = (τ �−τ)Σ(l).

Similar to (7.37), we have |Γ2Γ>2 − (τ � − τ)Σ(l)|F = OP((τ � − τ)1/2). Hence

T∑
t=1

|d�t |22 = (τ � − τ)tr{(E − Ẽ)Σ(l)(E − Ẽ)>D>TDT}+ oP(1).
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Part I2. Note H∗� −H� = DT (Uε1Γ
>
1 + Uε2Γ

>
2 )(Γ1Γ>1 + Γ2Γ>2 )−1D̃−1

T . Hence |H∗� −H�|2 = OP(T−1/2). By

(7.40),

τ�∑
t=τ+1

r�>t d�t = tr
{

(H∗� − Fτ )D̃TΓ2Γ>2 D̃
>
T (H� −H∗�)> + (H∗� − Fτ )D̃TΓ2U

>
ε2
D>T

}
= tr{(E − Ẽ)Γ2U

>
ε2
D>TDT}+ oP(1).

Same argument leads to
∑

τ�+1≤t≤T r
�>
t d�t = oP(1) and

∑
1≤t≤τ r

�>
t d�t = oP(1). Then desired result follows

by noting |D>TDT − IL|F = OP(T−1/2).

Step 2. Note

tr{(E − Ẽ)Γ2U
>
ε2
} =

τ�∑
t=τ+1

ξt, where ξt = ε>t (E − Ẽ)Γ2,t−τ .

Let ξ̃k be ξk with Zt replaced by Z(l)
t . For δk := ‖P0ξ̃k‖q′ , since ‖P0|Γ̃2,t−τ |2‖q′ ≤ ‖|Γ̃2,t−τ − Γ̃2,t−τ,{0}|2‖q′ ,

we have

δk ≤ δe‖|Γ̃2,k−τ − Γ̃2,k−τ,{0}|2‖q′‖|εk|2‖q′ , k ≥ 1,

and δ0 ≤ δe‖|Γ̃2,−τ |2‖q′‖|ε0 − ε′0|2‖q′ . By Lemma 4,
∑

t≥0 ‖|Z̃t − Z̃t,{0}|2‖q′ = O(1), hence δ−1
e

∑
k≥0 δk <∞.

By Theorem 3 in Wu (2011), the invariance principle holds as δe → 0,

δe
σ

τ�∑
t=τ�−bδ−2

e sc

ξ̃t ⇒ W (s), (7.41)

where W (·) is a standard Wiener process on [0,∞) and

σ2 = E(ξ̃2
τ�) = tr

{
E(ετ�ε

>
τ�)(E − Ẽ)E(Γ2,τ�−τΓ

>
2,τ�−τ )(E − Ẽ)>

}
= tr{Σε(E − Ẽ)Σ(l)(E − Ẽ)>}.

Then σ/δe � 1 in view of the largest and smallest eigenvalues of Σ(l) and Σε are bounded above and below

by some positive constants. Since ‖|(Γ2 − Γ̃2)U>ε2 |F‖q′ ≤
∑τ�

t=τ+1 ‖|Γ2,t−τ − Γ̃2,t−τ |2‖q′‖|εt|2‖q′ = O(1), and

δe → 0, (7.41) holds for ξt replaced by ξ̃t.

Step 3. Let (Ĥ�, F̂ �) = argminH,F Ŝ(τ �, H, F ), then (Ĥ�, F̂ �) is (H∗�, F ∗�) with Zt and εt replaced by

D−1
T Ẑt and D−1

T ε̂t. Let d̂�t and r̂�t be d�t and r�t with H∗�, F ∗�, DTZt replaced by Ĥ�, F̂ �, Ẑt respectively.
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Then by (7.39),

|Vτ − V̂τ | ≤
T∑
t=1

||d�t |22 − |d̂�t |22|+ 2
T∑
t=1

(|r�>t (d�t − d̂�t )|+ |(r�t − r̂�t )>d̂�t |).

Since by Cauchy-Schwartz inequality,
∑T

t=1 ||d�t |22− |d̂�t |22| ≤ (
∑T

t=1 |d�t − d̂�t |22)1/2(
∑T

t=1(|d�t |+ |d̂�t |2)2)1/2. By

(7.33),
T∑
t=1

|d�t − d̂�t |22 = oP(1) and
T∑
t=1

|r�t − r̂�t |22 = oP(1).

Hence
∑T

t=1 ||d�t |22 − |d̂�t |22| = oP(1). Similarly we have
∑T

t=1 |r�>t (d�t − d̂�t )| ≤ (
∑T

t=1 |r�t |22)1/2(
∑T

t=1 |d�t −

d̂�t |22)1/2 = oP(1) and
∑T

t=1 |(r�t − r̂�t )>d̂�t | ≤ (
∑T

t=1 |(r�t − r̂�t |22)1/2(
∑T

t=1 |d̂�t |22)1/2 = oP(1).

REFERENCES

Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point.

Econometrica: Journal of the Econometric Society , 821–856.

Bai, J. (1997). Estimation of a change point in multiple regression models. The Review of Economics and

Statistics 79 (4), 551–563.

Bai, J., X. Han, and Y. Shi (2016). Estimation and inference of change points in high dimensional factor models.

Manuscript .

Bai, J. and S. Ng (2008). Recent developments in large dimensional factor analysis. Technical report, Working

Paper, Mimeo.

Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural changes. Econometrica,

47–78.
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van Bömmel, A., S. Song, P. Majer, P. N. Mohr, H. R. Heekeren, and W. K. Härdle (2014). Risk patterns and
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