Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/174174
Autoren: 
Baruník, Jozef
Kukačka, Jiří
Datum: 
2016
Reihe/Nr.: 
IES Working Paper 07/2016
Zusammenfassung: 
This paper proposes computational framework for empirical estimation of Financial Agent-Based Models (FABMs) that does not rely upon restrictive theoretical assumptions. We customise a recent methodology of the Non-Parametric Simulated Maximum Likelihood Estimator (NPSMLE) based on kernel methods by Kristensen and Shin (2012) and elaborate its capability for FABMs estimation purposes. To start with, we apply the methodology to the popular and widely analysed model of Brock and Hommes (1998). We extensively test finite sample properties of the estimator via Monte Carlo simulations and show that important theoretical features of the estimator, the consistency and asymptotic efficiency, also hold in small samples for the model. We also verify smoothness of the simulated log-likelihood function and identification of parameters. Main empirical results of our analysis are the statistical insignificance of the switching coefficient but markedly significant belief parameters defining heterogeneous trading regimes with an absolute superiority of trend-following over contrarian strategies and a slight proportional dominance of fundamentalists over trend following chartists.
Schlagwörter: 
heterogeneous agent model
heterogeneous expectations
behavioural finance
intensity of choice
switching
non-parametric simulated maximum likelihood estimator
JEL: 
C14
C51
C63
D84
G02
G12
Dokumentart: 
Working Paper
Nennungen in sozialen Medien:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.