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Abstract: 

This paper proposes computational framework for empirical estimation of Financial 

Agent-Based Models (FABMs) that does not rely upon restrictive theoretical 

assumptions. We customise a recent methodology of the Non-Parametric Simulated 

Maximum Likelihood Estimator (NPSMLE) based on kernel methods by Kristensen 

and Shin (2012) and elaborate its capability for FABMs estimation purposes. To start 

with, we apply the methodology to the popular and widely analysed model of Brock 

and Hommes (1998). We extensively test finite sample properties of the estimator 

via Monte Carlo simulations and show that important theoretical features of the 

estimator, the consistency and asymptotic efficiency, also hold in small samples for 

the model. We also verify smoothness of the simulated log-likelihood function and 

identification of parameters. Main empirical results of our analysis are the statistical 

insignificance of the switching coefficient but markedly significant belief parameters 

defining heterogeneous trading regimes with an absolute superiority of trend-

following over contrarian strategies and a slight proportional dominance of 

fundamentalists over trend following chartists. 
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1. Introduction

Financial markets are one of the fundamental motivative forces of the economic development but
the Global Financial Crisis pointed again at the deficiency of knowledge of how this important seg-
ment of the global economy works. After the failure of traditional financial models in the Global
Financial Crisis of 2007–2008, the Agent-Based (AB) approaches in Finance denoted as Financial
Agent-Based Models (FABMs) have attracted attention both of academicians as well as practition-
ers and hence gradually replace traditional financial models in the recent financial literature. This
advancement emphasises that although the serious macroeconomic consequences of market fluctu-
ations are worldwide, the essence of problems remains at the level of individual market agents with
their heterogeneous expectations. The FABMs reflect this well documented and systematic human
departure from the representative agent’s full rationality towards reasonably realistic bounded,
limited rationality (Simon, 1957). An essential achievement of the FABM methodology is the abil-
ity to replicate so called stylised facts of financial data1 and account for emergence of asset market
bubbles followed by sudden crashes. Neither observed empirical regularities, nor explosive bubbles
(Evans, 1991) can be reasonably explained by traditional financial models. Recently, number of
projects propose a courageous attempt to complement or even alternate current mainstream policy
making approaches through the use of Agent-Based Models (ABMs), typically at the level of cen-
tral banks. For this to happen, it is, however, essential to estimate these models on the empirical
data in order to use them for forecasting.

Traditional models in Economics and Finance are based on the hypothesis of Rational Ex-
pectations (RE) (Muth, 1961; Lucas, 1972) and approximation of market population by a rep-
resentative agent. Under RE, agents form expectation using all available information, however,
they may be individually incorrect. Nonetheless, agents must not be systematically biased, i.e. the
forecasting errors agents make must be random. The representative agent, which notion dates back
to Edgeworth (1881), thus behaves in a perfectly rational, i.e. model consistent manner according
to solution of a maximisation problem under full information (involving also information about
behaviour of all other agents) and no computational constraints. Especially in Finance, mostly
simple linear, stable equilibrium models driven by exogenous random news about fundamentals
have been developed under this paradigm. A ‘textbook example’ is the Capital Asset Pricing
Model (CAPM, e.g. Sharpe, 1964). RE is a necessary condition for the striking E�cient Market
Hypothesis (EMH) (Fama, 1970), dominating the filed in the past, according to which asset prices
reflect all relevant information about economic fundamentals available to economic agents. As a
consequence, securities prices follow Random Walk (RW). Irrational traders thus in average re-
ceive lower profits that rational agents and in the process of the ‘evolutionary market pressure’ are
driven out of the market, a statement called the ‘Friedman Hypothesis’.

This paper focuses on the field of Agent-Based Computational Finance (ACF) that has
experienced an extensive development during the last three decades. The departure of FABMs from
the RE paradigm has proceeded from the 1980s ensued by first macroeconomic ABMs from the
1990s. Recently, many Macro ABMs have been developed sharing similar modelling concepts with
FABMs but also following the Dynamic Stochastic General Equilibrium (DSGE) literature as many
challenges within these two fields overlap. A rapid development of Macro ABMs was substantially
accelerated by events in 2008, known as the Global Financial Crisis of 2007–2008, followed by the

1A term coined by Kaldor (1961, pg. 178) as view of the facts concentrated “on broad tendencies, ignoring
individual detail”, for comprehensive surveys consult Cont (2001, 2007).
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period of so called ‘Great Recession’. Fagiolo and Roventini (2012, pg. 67, 69) comment that “the
Great Recession seems to be a natural experiment for macroeconomics showing the inadequacy of
the predominant theoretical framework—the New Neoclassical Synthesis—grounded on the DSGE
model” and draw attention to the fact that “an increasing number of leading economists claim that
the current economic crisis is a crisis for economic theory”. Canova et al. (2014, pg. 1029) argue
that “linear Gaussian specifications [of DSGE models]2 are inadequate to describe the 2008–2009
Great Recession, the subsequent episode of zero nominal interest rates and the events during the
subsequent sovereign debt crisis in Europe”.

AB approaches in Economics thus departure from models with perfectly rational representa-
tive agent3 and model-consistent homogeneous expectations in reaction to unrealistic assumptions
of the RE paradigm, equilibrium conditions, lack of microeconomics foundation when applying
the RE Hypothesis in macroeconomic research,4 and the inability of asset pricing models derived
from the EMH to replicate empirically observed stylised facts and explain speculative bubbles.
This modern approach builds on direct interactions of boundedly rational economic agents (Simon,
1955, 1957; Sargent, 1993) with limited cognitive and information processing capacities, disposing
insu�cient computational power, and incomplete information. Nonetheless, agents do not act ir-
rationally, but follow simple behavioural heuristics, that may be the most ‘rational’ choice given
objective constrains they face and costs of gathering information. Agents’ actions are not solutions
of maximisation problems, but are selected according to adaptive updating rules and their relative
profitability. According to Branch (2004, pg. 592), they in fact “behave as if they were econome-
tricians”. Agents are assumed to behave according to psychological and sociological evidence to
better reflect the real world phenomena, i.e. ABMs often embrace findings from market psychol-
ogy (e.g. Kahneman and Tversky, 1974, 1979) and herding behaviour (Keynes, 1936). Dynamics
of these economic systems is not generated via exogenous shock mechanisms but prices are driven
endogenously based on boundedly rational expectations of agents resulting in direct interactions.
Any equilibrium condition is not required, that means, markets may be found even continually
out of equilibrium without violating model assumptions. Another important theoretical viewpoint
in favour of ABMs is revealed e.g. by Browning et al. (1999) who remark that representative
preferences mostly cannot govern model behaviour asymptotically, or by Fagiolo et al. (2008) who
rightly point out that RE prevent models to address distributional issues in situations when many
macroeconomic time series distributions can be well-approximated by fat tail densities.

Although the empirical estimation is an important part of the modelling cycle and seems
crucial for model validation, one cannot find many attempts on empirical estimation of FABMs.
Moreover, looking ten years back in the financial literature, we neither observe any general con-
sensus on the estimation methodology, nor conclusive results. Fagiolo et al. (2007, pg. 202) even
emphasise “no consensus at all about how (and if) AB models should be empirically validated”.
Generally, there are two essential di�culties, or rather challenges, in estimating the FABMs. First,
a highly nonlinear and complex nature of these systems prohibits researchers of using classical es-
timation methods as the objective function often has no analytical expression. Second, a possible
overparametrisation, high number of degrees of freedom, and optional model settings together with

2A note added by the authors.
3An important early criticism of the representative agent paradigm is provided by Kirman (1991).
4So called ‘Aggregation Problem’ refers to a theoretical fact that the assumption of rationality at the individual

level does not imply aggregate rationality (e.g. Janssen, 1993). Fagiolo and Roventini (2012) correctly point out that
“RE is a property of the economic system as a whole, individual rationality is not a su�cient condition for letting
the system converge to the RE fixed-point equilibrium (Howitt, 2012)”.
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the stochastic dynamics further escalate the complexity of the problem. The emerging properties
of these models cannot be analytically deduced, a Method of Moments (MM), “while fine in theory,
might be too computationally costly to undertake” (LeBaron and Tesfatsion, 2008, pg. 249), and
thus a considerable simulation capacity for the numerical analysis is required.

This paper makes a step forward and proposes more general computational framework for
empirical validation of full-fledged FABMs. We base the estimation methodology on a recently de-
veloped Non-Parametric Simulated Maximum Likelihood Estimator (NPSMLE) by Kristensen and
Shin (2012). For many FABMs one cannot analytically derive the likelihood function to estimate
the model parameters via Maximum Likelihood Estimator (MLE). However, the observations from
the model can be numerically simulated and utilised for the kernel estimation of the conditional
density of the data-generating process. Thus, the likelihood function can be replaced by the sim-
ulated likelihood. Non-Parametric Simulated Maximum Likelihood Estimator (NPSMLE) is an
estimation framework that functions under very general conditions met by many FABMs. Hence
its theoretical properties hold and it can be transferred to the FABM literature. Indeed, recently
Grazzini and Richiardi (2015, pg. 151) suggest to employ the NPSMLE methodology on ABMs in
general. We extensively test capability of the method for the FABMs estimation purposes via a
complex Monte Carlo analysis. To start with, we apply the methodology to the popular and widely
analysed model of Brock and Hommes (1998) for which we customise the general framework of
Kristensen and Shin (2012). The key feature of the model is an evolutionary switching of agents
between simple trading strategies based on past realised profits—so called Adaptive Belief Sys-
tem (ABS)—governed by the switching parameter of the intensity of choice �. This parameter is
responsible for high nonlinearity of the system and possibly chaotic price motion. We presuppose
that if the NPSMLE method succeeds in estimation of this generally challenging FABM framework
and the switching parameter �, it is likely to appear more general and useful for other ABMs in
the future.

The paper is organised as follows. After the Introduction, in Section 2 we provide a literature
survey on FABMs estimation methods. Next, Section 3 introduces theoretical background of the
NPSMLE method by Kristensen and Shin (2012) and describes the Brock and Hommes (1998)
Heterogeneous Agent Model (HAM) framework. Findings of the Monte Carlo simulation study
of NPSMLE application to the HAM are reported in Section 4 and Section 5 presents empirical
estimation results. Finally, Section 6 draws overall conclusions.

2. Literature review: methods and results

Over last decades, a large number of various HAMs have been developed and analysed. However,
although the empirical estimation is an important validation part of the modelling cycle, one
cannot find many examples on empirical estimation of HAMs using empirical data—typical HAM
studies mostly employ simulation techniques to confirm ability to replicate stylised facts of financial
data. Additionally, only several of those attempts provide a rigorous comparison of forecasting
performance or in terms of fitting empirical market data with ‘mainstream’ approaches such as
ARIMA, GARCH ‘family’ or other ‘competing’ econometrics models. In existing empirical papers,
estimation methods are often chosen ad hoc or the models are ex ante designed or substantially
simplified in a way that a particular estimation method can be used. For the reason, as de Jong
et al. (2010, pg. 1653) point out: “although the heterogeneity of agents approach is intellectually
satisfying, the heterogeneity model has hardly been estimated with empirical financial data because
of the non-linear nature of the model that mainly arises from the existence of the mechanism that
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governs the switching between beliefs”. Furthermore, Westerho↵ and Reitz (2005, pg. 642) highlight
the fact that “one has to sacrifice certain real-life market details. If the setup is too complicated,
econometric analysis is precluded”. In any case, since the complexity of HAMs often does not allow
for analytical solutions, the empirical validation of agent-based systems together with simulation
analyses remain the crucial tools of HAMs verification.

2.1. The use of econometric techniques

Utilisation of econometrics to empirically validate or estimate HAMs dates more than one
decade back in the financial literature history. Within this stage of development of the Heterogeneous
Agent (HA) modelling, the central concern embraces the determination of appropriate values of
model parameters and assessment of their statistical significance. However, as summarised in Ta-
ble 1 and Table 2, looking ten years back in literature, we neither observe any general consensus on
the estimation methodology, nor conclusive results. Fagiolo et al. (2007, pg. 199, 202) assert that
“a strongly heterogeneous set of approaches to empirical validation is to be found in the AB liter-
ature”. Given di↵erent origins as well as various modelling concepts, the estimation methodology
also varies. As depicted in the third column of Tables 1 and 2, the three estimation methods—the
Nonlinear Least Squares (NLS), Quasi Maximum Likelihood (QML), and the Method of Simulated
Moments (MSM)—prevail among others. When moving to the fourth column of Tables 1 and 2 we
can see how the choice of estimated parameters is a↵ected by various model designs. Nonetheless,
we can observe a general tendency to estimate mainly parameters related to ‘behavioural rules’ of
agents: belief coe�cients defining individual trading strategies and the intensity of choice or its
corresponding concepts in di↵erent types of models (mutation, herding tendency, and switching
thresholds). All these parameters are apparently meaningful from the economic interpretation
point of view.

Various direct and indirect estimation methods have already been employed. However, for the
use of direct methods, instead of the usual Ordinary Least Squares (OLS) or Maximum Likelihood
(ML) methods, the NLS and QML methods are applied in most of the cases. In these applications,
crucial HAM structural features, e.g. the evolutionary switching between trading strategies—
one of the key concepts of the HA modelling, are sometimes restrained or even sacrificed to obtain
simplified approach which can be estimated using suggested methods. However, for many HAMs the
aggregation equation, which would contain all parameters of interest, cannot be derived analytically
and therefore the application of direct estimation techniques is not feasible. Indirect estimation
methods thus overcome this problematic issue by simulating artificial data from the model through
which the aggregation concepts such as moments for the MSM are derived. These simulation-based
econometric methods “are very applicable and may dramatically open the empirical accessibility
of agent-based models in the future” as suggested by Chen et al. (2012, pg. 204). Simulation-based
econometric methods already used for the HAMs estimation include the MSM, the E�cient Method
of Moments (EMM), or generally the Simulated Minimum Distance (SMD). All these methods
are based on minimising the (weighted) distance between two sets of simulated and observed
moments. So far, however, the use of simulation-based econometric methods for validation of
HAMs is relatively rare.

2.2. Performance of ML and Quasi ML

Applications of methods based on ML principle share a relatively similar problem: the objec-
tive function is often very flat in direction of some parameters—typically the switching parameter
of the intensity of choice. Problematic identification of given parameters is then reflected in large

4



Table 1: Estimation methods of FABMs I.

Models Origin Methods Parameters estimated # Data Type Fit |IOC|
Alfarano et al. (2005) IAH ML Herding tendency 2 d:5034–9761 o. s,fx,g - -
Alfarano et al. (2006) IAH ML Herding tendency 2 d:5495,6523 o. s,fx - -
Alfarano et al. (2007) IAH ML Herding tendency 2 d:1975–2001 s - -
Amilon (2008) ABS EMM/ML Intensity of choicea 15 d:1980–2000 s p-v=0% 1.99(i),1.91(s)
Boswijk et al. (2007) ABS NLS Belief coe�cients/Intensity of choice 3 a:132 o. s R

2=.82 10.29(i),7.54(i)
de Jong et al. (2009b) ABS NLS Belief coe�cients/Intensity of choice 5 w:102 o. fx adjR

2=.14 1.52(i)
de Jong et al. (2010) ABS Quasi ML Belief coe�cients/Intensity of choice 7 m:238 o. fx - .0007(i)–6.29(s)
Diks and Weide (2005) ABS ML (G)ARCH relations/Sign of MA(1) c. 3 d:3914 o. fx - -
Ecemis et al. (2005) AA IEC Market fractions/Behavioural rules 3 - s - -
Gilli and Winker (2003) ANT MSM Mutation/Conviction rate 3 d:1991–2000 fx NA -
Manzan and Westerho↵ (2007) ABS OLS Reaction coe↵s./Switching threshold 4 m:1/74–12/98 fx NA -
Reitz and Westerho↵ (2007) ABS Quasi ML Behavioural rules/Intensity of choice 6 m:365 o. c - .17(s)–.47(s)
Westerho↵ and Reitz (2003) ABS Quasi ML Behavioural rules/Intensity of choice 7 d:4431 o. fx - .02(s)–.17(s)
Winker and Gilli (2001) ANT MSM Mutation/Conviction rate 2 d:1991–2000 fx NA -
Winker et al. (2007) ANT MSM Mutation/Conviction rate 3 d:1991–2000 fx p-v<1%b -

Note: The Table is adopted from Chen et al. (2012, pg. 203) and amended by the authors. Authors are alphabetised. The full meaning of the acronyms under
‘Origin’: AA stands for Autonomous Agents, ABS for Adaptive Belief System, ANT for the Ant type of system, and IAH for Interactive Agent Hypothesis.
The full meaning of the acronyms under ‘Methods’: ML stands for Maximum Likelihood, EMM for E�cient Method of Moments, NLS for Nonlinear Least
Squares, OLS for Ordinary Least Squares, IEC for Interactive Evolutionary Computation, and MSM (SMM) for Method of Simulated Moments. ‘#’ displays
total number of estimated parameters; ‘Data’ describes data frequency: ‘d/w/m/q/a’ for daily/weekly/monthly/quarterly/annual, and number of observations
(when a specific figure is not provided, we report starting and final years); ‘Type’ shows the type of data: ‘s/fx/c/g/re’ for stock markets/FX/commodity
markets/gold/real estate; ‘Fit’ reports the statistical fit of the estimation (R2, its alternatives, p-value of the J-test of overidentifying restrictions to accept the
model as a possible data generating process); and ‘|IOC|’ displays the absolute estimated value of the ‘intensity of choice’—the switching parameter from the
multinomial logit model, see Equation 16 (where relevant), furthermore ‘s’/‘i’ denotes its statistical significance/insignificance at 5% level. Figures are rounded
to 2 decimal digits.

aChen et al. (2012) do not report other important parameters estimated: belief coe�cients, intensities of exogenous noises, risk aversion, information
costs for fundamentalists, forgetting factors, and memory in the fitness measure.

bWhile p-val for GARCH(1,1) model > 5%.
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Table 2: Estimation methods of FABMs II. a)

Models Origin Methods Parameters estimated

Barunik and Vosvrda (2009) Cusp ML Asymmetry and bifurcation factors/Location and scale coe�cient
Barunik and Kukacka (2015) Cusp RV/ML Asymmetry and bifurcation factors/Polynomial data approximation
Bolt et al. (2011) ABS NLS(?) Expectations’ bias/Discount factor/Belief coe�cients/Intensity of choice
Bolt et al. (2014) ABS NLS Belief coe�cients/A-synchronous updating ratio/Intensity of choice
Cornea et al. (2013) ABS VAR/NLS Fundamentalists’ belief coe�cient/Intensity of choice
Chen and Lux (2015) IAH MSM Standard deviation of innovations/Herding tendency
Chiarella et al. (2014) ABS Quasi ML Belief & market maker coe�cients/Memory decay rate/Intensity of choice
Chiarella et al. (2015) ABS Quasi ML Belief coe�cients/Variance risk premium/Intensity of choice
de Jong et al. (2009a) ABS ML Belief coe�cients/Intensity of choice
ter Ellen and Zwinkels (2010) ABS Quasi ML Belief coe�cients/Intensity of choice
ter Ellen et al. (2013) ABS OLS/NLS Behavioural rules/Intensity of choice
Franke (2009) ABS MSM Reaction coe�cients/Switching threshold
Frijns et al. (2010) ABS EMS Local volatility/Belief coe�cients/Intensity of choice
Franke and Westerho↵ (2011) IAH MSM Behavioural rules/Flexibility/Predisposition coe�cients
Franke and Westerho↵ (2012) ABS/IAH MSM Behavioural rules/Wealth/Predisposition/Misalignment coe�cients
Ghonghadze and Lux (2015) IAH GMM Standard deviation of innovations/Herding tendency
Grazzini et al. (2013) Bass (1969) ML, MSM Probability of independent adoption/Peer pressure/Population size
Grazzini and Richiardi (2015) - SMD -
Goldbaum and Zwinkels (2014) ? OLS (iterative) Belief coe�cients
Hommes and Veld (2015) ABS NLS(?) Belief coe�cients/A-synchronous updating ratio(?)/Intensity of choice
Huisman et al. (2010) ABS Quasi ML Belief coe�cients/Intensity of choice
Kouwenberg and Zwinkels (2014) ABS Quasi ML Belief coe�cients/Intensity of choice
Kouwenberg and Zwinkels (2015) ABS Quasi ML Price elasticity/Belief coe�cients/Intensity of choice
Lof (2012) ABS NLS Belief coe�cients/Intensity of choice
Lof (0) ABS VAR/NLS Discount factors/Belief coe�cients/Intensity of choice
Reitz and Slopek (2009) ABS Quasi ML GARCH coe�cients/Belief coe�cients/Transition parameter
Recchioni et al. (2015) ABS calibration Belief coe�cient/Intensity of choice/Risk aversion/Fundamental value/Memory
Verschoor and Zwinkels (2013) ABS ML Belief coe�cients/Intensity of choice

Note: The Table follows the logic of Table 1 and summarises recent research not covered there. Authors are alphabetised. The full meaning of the
acronyms under ‘Origin’: Cusp stands for the cusp catastrophe model, ABS for Adaptive Belief System, and IAH for Interactive Agent Hypothesis.
The full meaning of the acronyms under ‘Methods’: ML stands for Maximum Likelihood, RV for Realised Volatility, NLS for Nonlinear Least Squares,
VAR for Vector Autoregression, MSM (SMM) for Method of Simulated Moments, OLS for Ordinary Least Squares, EMS for Empirical Martingale
Simulation by Duan and Simonato (1998), GMM for Generalized Method of Moments, and SMD for Simulated Minimum Distance. ‘?’ means that
given information is unclear to authors.
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standard deviations of estimates preventing from contributive interpretation of results. In the ma-
jority, especially older, studies a discussion about the shape of the log-likelihood function is missing
and the reader might only guess from insignificant estimates of the switching coe�cient. A few
most recent studies report that the likelihood is not very informative and the model accuracy is
not sensitive for given parameter, and “the other parameters can to a large extent compensate
for changes in �”, the switching coe�cient (Bolt et al., 2014, pg. 15). However, the shape of
the objective function is almost never rigorously studied. An exception is e.g. Hommes and Veld
(2015), who emphasise a very flat shape of the likelihood function for the intensity of choice selec-
tion that hampers validity of the test to reject the null hypothesis of switching, especially for small
samples. On the other hand, smoothness of the objective function does not seem to be an issue for
ML methods—this finding is further confirmed through Sections 4 and 5 also for Non-Parametric
Simulated Maximum Likelihood (NPSML).

2.3. Switching

Finally, a high importance is devoted to the existence of behavioural switching, that is, to the
sign, magnitude, and the statistical significance of the intensity of choice. Following the question of
Chen et al. (2012, pg. 202), “how big or how small is it?”, we, however, need to emphasise that the
magnitude of the switching coe�cient cannot be directly compared across various models, assets,
or time periods, as it is a unit free variable and its e↵ect on the model dynamics is conditional on
the particular model design and data. Four studies find a very large switching coe�cients (Bolt
et al., 2011, 2014; ter Ellen et al., 2013; Frijns et al., 2010), however, statistically insignificant in all
cases. In other relevant studies (20 out of 23), the estimated values are mostly found single-digit
and often close to zero, that well resembles the economic intuition of some, but realistically low
switching frequency between major types of trading strategies. Although the sign of the parameter
is of a crucial importance, in Tables 1 and 9 in Appendix 1 we present absolute values because
the interpretation of the positive/negative sign also depends on the specific design of the model.
Almost all studies report the theoretically expected sign of the e↵ect, nonetheless, we do not
observe any conclusive results regarding the statistical significance of the intensity of choice—no
connection can be observed w.r.t. the ‘#’ number of estimated parameters or the frequency and
length of the data. Statistically significant and insignificant findings are reported across these
categories without any clear pattern. On the other hand, some but definitely hypothetical relation
might be observed based on the ‘Type’ of the data: statistically significant estimates strongly
dominate for commodities and weakly prevail for stock markets; insignificant estimates prevail
for real estate markets and dominate for FX. However, as the sample of studies is rather small
and often problematically mutually comparable, these findings should be interpreted with a high
caution.
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3. Simulation-based estimation of FABMs: the case of Brock & Hommes HAM

This section describes an innovative general computational framework for empirical estimation of
full-fledged FABMs that often lack the closed-form solution of the likelihood function. Some few
authors thus apply simulation-based estimation MMs (for details see Section 2). We follow the
Kristensen and Shin (2012) concept of simulated MLE based on nonparametric kernel methods.
The methodology has been developed for dynamic models where no closed-form representation of
the likelihood function exists and thus we cannot derive the usual MLE. Therefore it constitutes
an opportune estimation method for general class of FABMs.

In Sections 4 and 5 we adopt the NPSMLE method to the FABM literature and test its
capability on the most famous and widely analysed model developed by Brock and Hommes (1998)
for which we customise the general framework of Kristensen and Shin (2012). Section 2 summarises
other attempts to estimate models derived from Brock and Hommes (1998) approach that builds
on evolutionary switching between trading strategies.

3.1. The Brock and Hommes (1998) model

Our modelling framework is within the Brock and Hommes (1998) HAM. The model is a
financial market application of the ABS—the endogenous, evolutionary selection of heterogeneous
expectation rules following the framework of Lucas (1978) and proposed in Brock and Hommes
(1997, 1998). We consider an asset pricing model with one risk free and one risky asset. The
dynamics of the wealth is as follows:

Wt+1 = RWt + (pt+1 + yt+1 �Rpt)zt, (1)

whereWt+1 stands for the total wealth at time t+1, pt denotes the ex-dividend price per share of the
risky asset at time t, and {yt} denotes its stochastic dividend process. The risk-free asset is perfectly
elastically supplied at constant gross interest rate R = 1 + r, where r is the interest rate. Finally,
zt denotes the number of shares of the risky asset purchased at time t. The type of utility function
considered is essential for each economic model and determines its nature and dynamics. The
utility for each5 investor (trader or agent alternatively) h is given by U(W ) = �exp(�aW ), where
a > 0 denotes the risk aversion, which is assumed to be equal for all investors. For determining the
market prices in this model, the Walrasian auction scenario is assumed. I.e. the market clearing
price pt is defined as the price that makes demand for the risky asset equal to supply at each trading
period t and investors are ‘price takers’. The detailed description of the price formation mechanism
is o↵ered further in this section and finally summarised by Equation 13 and Equation 14.

Let Et, Vt denote the conditional expectation and conditional variance operators, respec-
tively, based on a publicly available information consisting of past prices and dividends, i.e. on the
information set Ft = {pt, pt�1, . . . ; yt, yt�1, . . . }. Let Eh,t, Vh,t denote the beliefs of investor type
h (trader type h alternatively) about the conditional expectation and conditional variance. For
analytical tractability, beliefs about the conditional variance of excess returns are assumed to be
constant and the same for all investor types, i.e. Vh,t(pt+1+yt+1�Rpt) = �2. Thus the conditional
variance of total wealth Vh,t(Wt+1) = z2t �

2.

5This is a crucial assumption without which the original model of Brock and Hommes (1998) loses one of its
greatest advantages of analytical tractability.
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Each investor is assumed to be a myopic6 mean variance maximiser, so for each investor h
the demand for the risky asset zh,t is the solution of:

max
zt

n

Eh,t[Wt+1]�
a

2
Vh,t[Wt+1]

o

. (2)

Thus
Eh,t[pt+1 + yt+1 �Rpt]� a�2zh,t = 0, (3)

zh,t =
Eh,t[pt+1 + yt+1 �Rpt]

a�2
. (4)

Let nh,t be the fraction of investors of type h at time t and its sum is one, i.e.
PH

h=1 nh,t = 1. Let
zs,t be the overall supply of outside risky shares. The Walrasian temporary market equilibrium for
demand and supply of the risky asset then yields:

H
X

h=1

nh,tzh,t =
H
X

h=1

nh,t

⇢

Eh,t[pt+1 + yt+1 �Rpt]

a�2

�

= zs,t, (5)

where H is the number of di↵erent investor types. In the simple case H = 1 we obtain the
equilibrium pricing equation and for the specific case of zero supply of outside risky shares, i.e.
zs,t = 0 for all t, the market equilibrium then satisfies:

Rpt =
H
X

h=1

nh,t{Eh,t[pt+1 + yt+1]}. (6)

In a completely rational market Equation 6 reduces to Rpt = Et[pt+1 + yt+1] and the price of the
risky asset is completely determined by economic fundamentals and given by the discounted sum
of its future dividend cash flow:

p⇤t =
1
X

k=1

Et[yt+k]

(1 + r)k
, (7)

where p⇤t depends upon the stochastic dividend process {yt} and denotes the fundamental price
which serves as a benchmark for asset valuation based on economic fundamentals under rational
expectations. In the specific case where the process {yt} is independent and identically distributed,
Et{yt+1} = ȳ is a constant. The fundamental price, which all investors are able to derive, is then
given by the simple formula:

p⇤ =
1
X

k=1

ȳ

(1 + r)k
=

ȳ

r
. (8)

For the further analysis it is convenient to work not with the price levels, but with the deviation
xt from the fundamental price p⇤t :

xt = pt � p⇤t . (9)

6To be ‘myopic’ means to have a lack of long run perspective in planning. Roughly speaking, it is the opposite
expression to ‘intertemporal’ in economic modelling.
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3.1.1. Heterogeneous beliefs

Now we introduce the heterogeneous beliefs about future prices. We follow the Brock and
Hommes (1998) approach and assume the beliefs of individual trader types in the form:

Eh,t(pt+1 + yt+1) = Et(p
⇤
t+1 + yt+1) + fh(xt�1, . . . , xt�L), for all h, t, (10)

where p⇤t+1 denotes the fundamental price (Equation 7), Et(p⇤t+1 + yt+1) denotes the conditional
expectation of the fundamental price based on the information set Ft = {pt, pt�1, . . . ; yt, yt�1, . . . },
xt = pt � p⇤t is the deviation from the fundamental price (Equation 9), fh is some deterministic
function which can di↵er across trader types h and represents a ‘h-type’ model of the market, and
L denotes the number of lags.

It is now important to be very precise about the class of beliefs. From the expression in
Equation 10 it follows that beliefs about future dividends flow:

Eh,t(yt+1) = Et(yt+1), h = 1, . . . H, (11)

are the same for all trader types and equal to the true conditional expectation. In the case where
the dividend process {yt} is i.i.d., from Equation 8 we know that all trader types are able to derive
the same fundamental price p⇤t .

On the other hand, traders’ beliefs about future price abandon the idea of perfect rationality
and move the model closer to the real world. The form of this class of beliefs:

Eh,t(pt+1) = Et(p
⇤
t+1) + fh(xt�1, . . . , xt�L), for all h, t, (12)

allows prices to deviate from their fundamental value p⇤t , which is a crucial step in heterogeneous
agent modelling. fh allows individual trader types to believe that the market price will di↵er from
its fundamental value p⇤t .

An important consequence of the assumptions above is that heterogeneous market equilib-
rium from Equation 6 can be reformulated in the deviations form, which can be conveniently used
in empirical and experimental testing. We thus use Equation 9, 10 and the fact that

PH
h=1 nh,t = 1

to obtain:

Rxt =
H
X

h=1

nh,tEh,t[xt+1] =
H
X

h=1

nh,tfh(xt�1, . . . , xt�L) ⌘
H
X

h=1

nh,tfh,t, (13)

where nh,t is the value related to the beginning of period t, before the equilibrium price deviation
xt has been observed. The actual market clearing price pt might then be calculated simply using
Equation 9 as pt = xt + p⇤t , expressed more precisely, combining Equation 8, Equation 9, and
Equation 13 as:

pt = xt + p⇤t =

PH
h=1 nh,tfh,t

R
+

ȳ

r
. (14)

3.1.2. Selection of strategies

Beliefs of individual trader types are updated evolutionary and thus create the ABS, where
the selection is controlled by endogenous market forces (Brock and Hommes, 1997). It is actually
an expectation feedback system as variables depend partly on the present values and partly on the
future expectations.

The profitability (performance) measures for strategies h, h = 1, . . . H are derived from past
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realised profits as:7

Uh,t = (xt �Rxt�1)
fh,t�1 �Rxt�1

a�2
. (15)

Market fractions of trader types nh,t are then given by the discrete choice probability—the
multinomial logit model:8

nh,t =
exp(�Uh,t�1)

Zt
, (16)

Zt ⌘
H
X

h=1

exp(�Uh,t�1), (17)

where the one-period-lagged timing of Uh,t�1 ensures that all information for the market
fraction nh,t updating is available at the beginning of period t, � is the intensity of choice pa-
rameter measuring how fast traders are willing to switch between di↵erent strategies. Zt is then
normalisation ensuring

PH
h=1 nh,t = 1.

3.1.3. Basic belief types

In the original paper by Brock and Hommes (1998), the authors analyse the behaviour of
the artificial market consisting of a few simple belief types (trader types or strategies). The aim
of investigating the model with only two, three, or four belief types is to describe the role of each
particular belief type in deviation from fundamental price and to investigate the complexity of the
simple model dynamics with the help of the bifurcation theory.

All beliefs have the simple linear form:

fh,t = ghxt�1 + bh, (18)

where gh denotes the trend parameter and bh is the bias of trader type h. This form comes from the
argument that only very simple forecasting rules can have a real impact on equilibrium prices as
complicated rules are unlikely to be learned and followed by su�cient number of traders. Hommes
(2006) also notices another important feature of Equation 18, which is that xt�1 is used to forecast
xt+1, because Equation 5 has not revealed equilibrium pt yet when pt+1 forecast is estimated.

The first belief type are fundamentalists or rational ‘smart money’ traders. They believe
that the asset price is determined solely by economic fundamentals according to the EMH intro-
duced in Fama (1970) and computed as the present value of the discounted future dividends flow.
Fundamentalists believe that prices always converge to their fundamental values. In the model,
fundamentalists comprise the special case of Equation 18 where gh = bh = fh,t = 0. It is important

7Additional memory can be introduced into the profitability measure (Equation 15) e.g. as a weighted average of
past realised values Um,h,t = Uh,t + ⌘Um,h,t�1

, where 0  ⌘  1 denotes the ‘dilution parameter’ of the past memory
in the profitability measure. Nonetheless, for the majority of examples, Brock and Hommes (1998) use ⌘ = 0 to
keep derivations analytically tractable and work with models without memory, i.e. Equation 15 specification is used
directly.

8With regard to Macro ABMs, Branch and Evans (2006, pg. 266) point out that “the multinomial logit has
proven to be an important approach to modelling economic choices, and has been increasingly employed in recent
work in dynamic macroeconomics”.
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to note that fundamentalists’ demand also reflects market actions of other trader types. Funda-
mentalists have all past market prices and dividends in their information set Fh,t, but they are not
aware of the fractions nh,t of other trader types. Fundamentalists might pay costs C � 0 to learn
how fundamentals work and to obtain market information. However, Brock and Hommes (1998)
themselves mostly set C = 0 to keep simplicity of the analysis.

Chartists or technical analysts, sometimes called ‘noise traders’ represent another belief type.
They believe that asset price is not determined by economic fundamentals only, but it can be
partially predicted using simple technical trading rules, extrapolation techniques or taking various
patterns observed in the past prices into account. If bh = 0, trader h is called a pure trend chaser
if 0 < gh  R and a strong trend chaser if gh > R. Additionally, if �R  gh < 0, the trader h is
called contrarian or strong contrarian if gh < �R.

Next, if gh = 0 trader h is considered to be purely upward biased if bh > 0 or purely
downward biased if bh < 0.

3.2. Construction of the NPSMLE

This subsection introduces the estimation framework for the Brock and Hommes (1998)
model. Let us assume processes (x, v), x : t 7! Rk, v : t 7! Vt, t = 1, . . . ,1. The space Vt can be
time-varying. Suppose that we have T realisations {(xt, vt)}Tt=1. Let us further assume the time
series {xt}Tt=1 has been generated by a fully parametric model:

xt = qt(vt, "t, ✓), t = 1, . . . , T, (19)

where a function q : {vt, "t, ✓} 7! Rk, ✓ 2 ⇥ ✓ Rl is an unknown parameter vector, and "t is an
independent identically distributed (i.i.d.) sequence with known distribution F", which is (without
loss of generality) assumed not to depend on t or ✓. In general, the processes (x, v) can be non-
stationary and vt is allowed to contain other exogenous variables than lagged xt. We also assume
the model to have an associated conditional density ct(x|v; ✓), i.e.

C(x 2 A|vt = v) =

Z

A
ct(x|v; ✓)dx, t = 1, . . . , T, (20)

for any Borel set A ✓ Rk.
Let us now suppose that ct(x|v; ✓) from Equation 20 does not have a closed-form represen-

tation. In such situation, we are not able to derive the exact likelihood function of the model in
Equation 19 and thus a natural estimator of ✓—the maximiser of the conditional log-likelihood:

✓̃ = arg max
|{z}

✓2⇥

LT (✓), LT (✓) =
T
X

t=1

log ct(xt|vt; ✓) (21)

is not feasible.
In such situation, however, we are still able to simulate observations from the model in

Equation 19 numerically.9 The method presented allows us to compute a simulated conditional
density, which we further use to gain a simulated version of the MLE.

9For cases in which the model in Equation 19 is itself intractable and thus we cannot generate observations from
the exact model, Kristensen and Shin (2012) suggest a methodology for approximate simulations and define regularity
conditions for the associated approximate NPSMLE ✓̂M to have the same asymptotic properties as the simulated
MLE ✓̂ defined in Equation 25.
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To obtain a simulated version of ct(xt|vt; ✓) 8 t 2 h1, . . . , T i, x 2 Rk, v 2 Vt, and ✓ 2 ⇥, we
firstly generate N 2 N i.i.d. draws from F", {"i}Ni=1, which are used to compute:

X✓
t,i = qt(vt, "i, ✓), i = 1, . . . , N. (22)

These N simulated i.i.d. random variables, {X✓
t,i}Ni=1, follow the target distribution by con-

struction: X✓
t,i ⇠ ct(·|vt; ✓), and therefore can be used to estimate the conditional density ct(x|v; ✓)

with kernel methods—we define:

ĉt(xt|vt; ✓) =
1

N

N
X

i=1

K⌘(X
✓
t,i � xt), (23)

where K⌘( ) = K( /⌘)/⌘k, K : Rk 7! R is a generic kernel and ⌘ > 0 is a bandwidth. Under
regularity conditions on ct and K, we get:

ĉt(xt|vt; ✓) = ct(xt|vt; ✓) +OP (1/
p

N⌘k) +OP (⌘
2), N �! 1, (24)

where the last two terms are oP (1) if ⌘ �! 0 and N⌘k �! 1.
Having obtained the simulated conditional density ĉt(xt|vt; ✓) from Equation 23, we can now

derive the simulated MLE of ✓:

✓̂ = arg max
|{z}

✓2⇥

L̂T (✓), L̂T (✓) =
T
X

t=1

log ĉt(xt|vt; ✓). (25)

The same draws are used for all values of ✓ and we may also use the same set of draws from F"(·),
{"i}Ni , across t. Numerical optimization is facilitated if L̂T (✓) is continuous and di↵erentiable in ✓.
Considering Equation 23, if K and ✓ 7! qt(v, ", ✓) are s � 0 continuously di↵erentiable, the same
holds for L̂T (✓).

Under the regularity condition, the fact that ĉt(xt|vt; ✓)
P�! ct(xt|vt; ✓) implies that also

L̂T (✓)
P�! LT (✓) as N �! 1 for a given T � 1. Thus, the simulated MLE, ✓̂, retains the same

properties as the infeasible MLE, ✓̃, as T,N �! 1 under suitable conditions.

3.3. Advantages and disadvantages

To quote from Kristensen and Shin (2012, pg. 85), “one of the merits of NPSML is its general
applicability”. Authors also provide three examples of application of the methodology in their
article. The first comprises an estimation of the short-term interest rate model of Cox et al.
(1985). The second applies the methodology to a jump-di↵usion model of daily S&P500 returns by
Andersen et al. (2002). In the third example the general capabilities of the NPSMLE to estimate
a generic Markov decision processes are examined.

Kristensen and Shin (2012) also report several advantages and disadvantages of the pro-
posed estimator. Starting with the former, the estimator works whether the observations xt are
i.i.d. or non-stationary because the density estimator based on i.i.d. draws is not a↵ected by the
dependence structures in the observed data. Second, the estimator does not su↵er from the curse
of dimensionality, which is usually associated with kernel estimators. In general, high dimensional
models, i.e. with larger k ⌘ dim(xt) as we smooth only over xt here, require larger number of
simulations to control the variance component of the resulting estimator. However, the summation
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in Equation 25 reveals an additional smoothing e↵ect and the additional variance of L̂T (✓) caused
by simulations retains the standard parametric rate 1/N .

Conversely, the simulated log-likelihood function is a biased estimate of the actual log-
likelihood function for fixed N and ⌘ > 0. To obtain consistency, we need N �! 1 and ⌘ �! 0.
Thus, the parameter ⌘ needs to be properly chosen for given sample and simulation size. In the
stationary case, the standard identification assumption is:

E[log c(xt|vt, ✓)] < E[log c(xt|vt, ✓0)] 8 ✓ 6= ✓0. (26)

Under stronger identification assumptions, the choice of the parameter ⌘ might be less im-
portant and one can prove the consistency of the estimator for any fixed 0 < ⌘ < ⌘̄ for some ⌘̄ > 0
as N �! 1 (Altissimo and Mele, 2009). In practice this still requires us to know the threshold
level ⌘̄ > 0 but from the theoretical viewpoint this ensures that parameters can be well identified in
large finite samples after a given ⌘̄ > 0 is set. Moreover, it suggests that proposed methodology is
fairly robust to the choice of ⌘. In their simulation study, Kristensen and Shin (2012) show indeed
that the NPSMLE performs well using broad range of bandwidth choices.

3.4. Asymptotic properties

As the theoretical convergence of the simulated conditional density towards the true density
is met, we would expect the NPSMLE ✓̂ to have the same asymptotic properties as the infeasible
MLE ✓̃ for a properly chosen sequence N = N(T ) and ⌘ = ⌘(N). Kristensen and Shin (2012) show
that ✓̂ is first-order asymptotic equivalent to ✓̃ under set a general conditions, allowing even for
non-stationary and mixed discrete and continuous distribution of the response variable. Further,
using additional assumptions, including stationarity, they provide results regarding the higher-
order asymptotic properties of ✓̂ and derive expressions of the bias and variance components of the
NPSMLE ✓̂ compared to the actual MLE due to kernel approximation and simulations.

Therefore, a set of general conditions, satisfied by most models, need to be verified so that
ĉ �! c su�ciently fast to ensure asymptotic equivalence of ✓̂ and ✓̃. Kristensen and Shin (2012)
define a set of regularity conditions on the model and its associated conditional density that satisfy
these general conditions for uniform rates of kernel estimators defined in Kristensen (2009).

The kernel K from Equation 23 has to belong to a broad class of so-called bias high-order or
bias reducing kernels. E.g. the Gaussian kernel, which we use in Section 4, satisfy this condition
if r � 2, where r is the number of derivatives of c. Higher r causes faster rate of convergence
and determines the degree of ĉ bias reduction. Moreover, general versions of conditions usually
required for consistency and well-defined asymptotic distribution (asymptotic normality) of MLEs
in stationary and ergodic models are imposed on actual log-likelihood function and the associated
MLE to ensure the actual MLE ✓̃ in Equation 21 is asymptotically well-behaved.

4. Monte Carlo study: NPSMLE of the HAM

This section analyses the capability of the NPSMLE methodology for the HAMs estimation pur-
poses and evaluates small sample properties of the estimator via an extensive Monte Carlo study.
We simulate data from the HAM and employ the NPSMLE of selected model parameters to analyse
how well and under what conditions is the estimation method able to recover true values of pa-
rameters in the controlled environment. For its conceptual importance, a detailed focus is devoted
to the switching parameter—intensity of choice �.
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4.1. Simulation setup for the HAM

In the simulation setup, we follow the previous works of Barunik et al. (2009); Vacha et al.
(2012); Kukacka and Barunik (2013). The joint setup for the basic HAM model (see Subsection 3.1)
is used for all (if not explicitly stated otherwise) conducted simulations in this section and is defined
as follows. The model we use to generate observations is a very stylised simple version compactly
described in Hommes (2006, pg. 1169) and consisting of three mutually dependent equations:

Rxt =
H
X

h=1

nh,tfh,t + ✏t ⌘
H
X

h=1

nh,t(ghxt�1 + bh) + ✏t, (27)

nh,t =
exp(�Uh,t�1)

PH
h=1 exp(�Uh,t�1)

, (28)

Uh,t�1 = (xt�1 �Rxt�2)
fh,t�2 �Rxt�2

a�2

⌘ (xt�1 �Rxt�2)
ghxt�3 + bh �Rxt�2

a�2
, (29)

where ✏t (which coincides with "t in Equation 19) is an i.i.d. noise term sequence with given
distribution10 representing the market uncertainty and unpredictable market events.

In order to run the model in various di↵erent settings, we inevitably need to fix several
variables less important for the dynamics of the model to enable estimation of the key parameters.
First, we set the constant gross interest rate R = 1 + r = 1.0001 to resemble real market risk
free rate. Assuming 250 trading days per year and daily compounding, this daily value represents
circa 2.5% annual risk free interest rate which is a reasonable approximation. Although this figure
is not based on any rigorous calibration or taken from a specific study, similar values are largely
used in various financial and macroeconomic works. Moreover, as we show in further analysis, the
model exhibits considerable robustness w.r.t. various reasonable risk free values and thus there
is no need for more precise derivation of this parameter. We further fix the linear term 1/a�2

(comprising the risk aversion coe�cient a > 0 and the beliefs about the conditional variance of
excess returns �2) to 1. The similar setting has already been succesfully used in previous works
of Barunik et al. (2009); Vacha et al. (2012); Kukacka and Barunik (2013). It is important to
note that a and �2 are only scale factors for the profitability measure U . Their magnitudes do
not a↵ect relative proportions of Uh,t and thus do not influence the dynamics of the model output,
that is on the contrary usually characterised by time-varying variance. In other words, although
we assume constant �2, the output time series generated by the model does not have constant
variance. Strategy-specific ah or time-varying �2h,t are appealing concepts mainly for simulation
analyses of HAMs (see e.g. Gaunersdorfer, 2000; Chiarella and He, 2002; Amilon, 2008). Moreover,
we intentionally use relatively small number of possible trading strategies following (Kukacka and
Barunik, 2013), H = 5, for the general model setting or H 2 {2, 3} for so called 2-type and 3-type
model, respectively (Chen et al., 2012). Following Hommes (2006) via Equation 29, neither ‘dilution
parameter’ of the past memory ⌘ nor information costs C for fundamentalists are implemented into
the basic model setup to keep the dynamics of the model and impacts of assessed modification as

10Various specifications of normal and uniform distributions are utilised in Section 4, standard deviation of a
normal distribution is estimated in Section 5.
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clear as possible. Indeed, also Brock and Hommes (1998) mostly set C = 0 to keep simplicity of
the analysis and work with models without memory, i.e. they set the ⌘ = 0 (see Subsection 3.1.2)
to keep derivations analytically tractable.

Within the Monte Carlo method, several parameters are repeatedly randomly generated
to obtain statistically valid inference. Following the previous works by Barunik et al. (2009);
Vacha et al. (2012); Kukacka and Barunik (2013), trend parameters gh are drawn from the normal
distribution N(0, 0.42) and bias parameters bh are drawn from the normal distribution N(0, 0.32).
‘Strict’ fundamental strategy in the sense of the original Brock and Hommes (1998, pg. 1245)
article appears in the market by default, i.e. the first strategy is always defined as g1 = b1 = 0 and
therefore fundamentalists are always present on the market.

In the Monte Carlo simulations, we first study the capabilities of the NPSMLE under vari-
ous levels of the switching parameter—intensity of choice �. As discussed in Section 2, literature
estimating � using real marked data is relatively scarce because of di�culties arising from the
nonlinear nature of the HAM. Thus, � still remains a rather theoretical concept. Larger � implies
higher willingness of agents to switch between available trading strategies based on their relative
profitability—the best strategy attracts the most agents at each period. On the one hand, com-
prising the large variety of possible � values might seem as a dominant simulation strategy, on the
other hand one has to consider computational burden of the simulation process in real time. What
is perhaps even more important is to consider intensity of choice � from the economic viewpoint.
First, high values give rise to unrealistically high switching frequency, which is hardly to be ob-
served among market agents in reality. Next, negative � does not make any economic sense in the
presented model framework as it causes inverse illogical switching towards less profitable strategies.
Although the intensity of choice � cannot be directly rigorously compared across various models,
assets, or time periods (see discussion in Section 2), we utilise the general knowledge of previous
estimation e↵orts for models sharing similar framework to set meaningful simulation grids in this
section. When referring to literature review (see Subsection 2.3), in vast majority of research ar-
ticles sharing the ABS framework derived from Brock and Hommes (1998), � is found single-digit
and often close to zero, that well resembles the economic intuition of some, but realistically low
switching frequency between major types of trading strategies. Thus, we employ relatively rich,
but reasonable discrete range of � in our simulations: {0, 0.1, 0.5, 1, 3, 5, 10}. It is far beyond the
scope of this work to provide a deep analysis of the model behaviour, e.g. how the intensity of
choice � influences the dynamics of the model that can under some setting even generate purely
chaotic behaviour. Many studies have been devoted to this generally di�cult issue in past two
decades. In this context we refer the interested reader to the original paper of Brock and Hommes
(1998) containing comprehensive model dynamics analysis, extensive studies by Hommes (2006),
Hommes and Wagener (2009), Chiarella et al. (2009), or the recent book summarising 20 years of
research on the Heterogeneous Expectations Hypothesis by Hommes (2013).

Next, as discussed by Amilon (2008), the magnitude of noise term has to be considered
carefully. Noise is an inevitable part of the model as it represents the market uncertainty and
unpredictable market events, but it must not overshadow the e↵ect of variables under scrutiny. As
mentioned in Kukacka and Barunik (2013), although varying noise variance can cause some minor
changes in model outcomes, the analysed HAM embodies major similarities across various noise.
Although theoretically the F" from which the {"i}Ni=1 are drawn to simulate {X✓

t,i}Ni=1 (Equation 22)
is a generic known distribution, the assumptions about market noise can play crucial role in the
NPSMLE application to real world data. Therefore we test the model sensitivity and robustness
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of proposed methodology using 30 stochastic noise specifications from an extensive range drawn a)
from various normal distributions and b) from the uniform distributions

1. that cover the same intervals as are covered by their respective normal counterparts by the
99.74% of the probability mass;

2. with the same variances as their respective normal counterparts.

Detailed description of all 30 stochastic noise specifications can be found in Table 10 (speci-
fication for normal distributions), Table 13 (specification for uniform distributions of the 1. type),
and Table 14 (specification for uniform distributions of the 2. type). Basically, for the normally
distributed noise the range extends from a ‘miniscule’ standard deviations SD = 10�8, 10�7, 10�6

[a value used by Hommes (2013, pg. 170, 174, 177) in a similar model setting], or 10�5, followed by
‘small’ standard deviations SD = 10�4, 10�3, 0.01 [another value used by Hommes (2013, e.g. pg.
171) in a similar setting], standard normal SD = 1, and finally a relatively large ‘experimental’
standard deviation SD = 2. The sensitivity analysis of the NPSMLE method to the stochastic
noise specification is based on the normality assumption. The normal distribution of market noise
seems reasonably realistic and similar assumption has already been used in related studies, where
“the non-linear models are fed with an exogenous stochastic process, but the noise process is ‘nice’,
which in this case means that it is normally distributed”, as pointed out by Amilon (2008, pg.
344). We also utilise the favourable theoretical properties of the Gaussian kernel (Kristensen and
Shin, 2012, pg. 81) in Equation 23. To check the robustness of the method, we concur the previous
research in Barunik et al. (2009); Vacha et al. (2012); Kukacka and Barunik (2013)—where uniform
stochastic noise specification is utilised—and compare and contrast the results based on normally
distributed noise to the two rather extreme and economically unrealistic uniform variants defined
above. We intentionally do not consider any at first sight soliciting heavy-tailed noise distribu-
tion. The fact that financial data are heavy-tailed does not suggest any specific distribution of the
market noise. In fact, the situation is opposite. The attractiveness of the HAM is based on its abil-
ity to produce heavy-tailed distribution of model output although we input normally distributed
stochastic noise. Thus the HAM explains one of the most important stylised facts of financial time
series via endogenous interactions of fundamentalists and boundedly rational chartists, not as an
e↵ect of a specific distribution of noise input. Finally, five lengths of the resulting series entering
the NPSMLE algorithm are used: 100, 500, 1000, 5000, and 10000, and first 100 observations from
the HAM are always discarded11 as initial period, where the model dynamic is being established.

4.2. Simulation setup for the NPSMLE

We follow the Kristensen and Shin (2012) methodology used for the estimation of the Cox
et al. (1985) short-term interest rate model. However, we examine and adapt the setup for the
purposes of the HAM. As discussed in Subsection 3.3, there are two main trade-o↵s: between the
precision of the kernel estimation and the computational burden, and between the smoothness of
the kernel estimation and the bias.

As we are the first to apply a very recent NPSMLE methodology on a well-known HA mod-
elling framework, we can only partially base our simulation setup on some results from literature.
For this reason, we elaborate an extensive Monte Carlo simulation testing of the robustness of our

11We always simulate 100 extra observations to be discarded so that we finally get the intended length of the series
with stable dynamics without the initialisation period.
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Figure 1: Pre-estimation performance for selected �s
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Note: Results based on 100 random runs, number of observations t = 1000, and the kernel estimation precision N = 100, initial
point drawn from uniform distribution U(0, 30). Stochastic noise ✏t and {"i}Ni=1

drawn from standard normal distribution
N(0, 1). Black dotted vertical lines depict the true �s. Produced using automatic SmoothHistogram kernel approximation
function in Wolfram Mathematica.

findings. First, to analyse statistically valid results, we start from the benchmark in Kristensen
and Shin (2012) and compare the simulations of 100, 500, and 1000 runs. Moreover, three levels
of the kernel estimation precision are considered, namely N = 100, N = 500, and N = 1000. It is
important to note that the same draws {"i}Ni=1 are used to generate the simulations {X✓

t,i}Ni=1 over
time.

Second, the numerical algorithm is designed to find an optimum of either unconstrained or
constrained multivariable function. As discussed in Subsection 4.1, we expect � to be non-negative
but rather small, i.e. single-digit. Using pre-estimation step with unconstrained parameter space
we can obtain reasonably su�cient preliminary knowledge about the approximate true value of
estimated parameters even for computationally feasible setting. This general principle of a prelim-
inary rough search followed by a fine-tuning on a considerably restricted subset of the parameter
space is successfully applied e.g. in Chen and Lux (2015) for MSM estimation. In Figure 1 we
demonstrate the pre-estimation performance via smooth histograms of �̂ based on a setting which
can be easily computed using a personal computer within several minutes: � 2 {0.5, 3, 10}, 100
runs, number of observations t = 1000, kernel estimation precision N = 100, ✏t and {"i}Ni=1 drawn
from standard normal distribution, and the initial point drawn from uniform distribution covering
a broad interval h0, 30i. We can observe how the peak of the distribution approximately detects the
true value of � which helps us to constrain the parameter space in the next step. In subsequent—
this time computationally very extensive—optimisation of the constrained function to fine-tune the
precision of estimates we can therefore opt for relatively narrow bounds of the parameter space set
as h��, 3�i for � � 0 and h�0.5, 0.5i for � = 0.12 For the 2-type model simulation estimation study

12This extended range of the parameter space bounds covering also economically irrelevant negative values is used
to ensure the robustness of the method and not imposing excessive demands on the precision of the unconstrained
pre-estimation. Moreover, not allowing for negative values might naturally lead to an upward bias of the simulated
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(see Subsection 4.3.6), we use even wider and o↵-centered interval for the bounds of the parameter
space set as h�3|g2|, 3|g2|i and h�3|b2|, 3|b2|i, respectively, to allow for possible negative values, and
h�0.5, 0.5i for � = 0. For the 3-type model simulation estimation study (see Subsection 4.3.10),
it is, however, important to limit bounds by zero from one side, i.e. h0, 3|g2|i, h�3|g3|, 0i to avoid
problems with insu�cient specification of the model leading to ambiguous bimodal distributions of
estimated parameters. The same intervals are used for a random draw of a single13 starting point
of the optimisation search procedure which is drawn from the uniform distributions.

Third, to estimate the conditional density ct(x|v; ✓) with the kernel method (Equation 23),
the Gaussian kernel and the Silverman’s (1986) rule of thumb for finding the optimal size of the
bandwidth:

⌘ =

✓

4

3N

◆1/5

b�, (30)

where b� denotes the standard deviation of {X✓
t,i}Ni=1, are employed.

Additionally, Kristensen and Shin (2012, pg. 82) suggest undersmoothing option for the
bandwidth size selection concluding that “simulation results indicate that standard bandwidth
selection rules together with a bit of undersmoothing in general deliver satisfactory results”. More-
over, as found by Jones et al. (1996), smaller bandwidths are better for larger kernel approximation
precision, “because the estimator should be ‘more local’ when more information is present, and
when the density is rougher, because the bias e↵ect is stronger”. However, we do not use the
undersmoothing option in our numerical algorithm as for HAM the methodology is robust in this
aspect and various levels of undersmoothing do not change the outcomes.14

4.3. Monte Carlo results

In all simulations we are concerned in questions how accurately is the method able to recover
the true values and how robust is the method with respect to various settings. For this reason, all
tables (but not figures) in this section always report results based on 1000 random runs, number
of observations t = 5000, and the kernel estimation precision N = 1000 i.i.d. draws from given
distribution. Sample medians and means of the estimated values together with standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. ‘NN’ column reports the percentage of
runs with ‘NaN’ outcome rounded to integer numbers.15

4.3.1. � estimation in the general model

First and foremost, we assess the simplest but also the most crucial case of � estimation in
the general model with H = 5 possible trading strategies. The intensity of choice � is the most
important parameter influencing the dynamics of the system through the multinomial logit model
of a continuous adaptive evolution of market fractions in Equation 16. Not only its magnitude
between two extreme cases � = 0 and � = 1 is important, but � also determines the type of

estimator especially for � close to 0.
13Kristensen and Shin (2012) use multiple starting points for the numerical optimisation but for the HAM esti-

mation purposes in a simulated environment the single starting point is su�cient bringing the merits of markedly
reduced computational time and burden.

14Results of this testing are available upon request from authors.
15We comment more on the issue of possible occurrence of ‘NaN’ outcome from the NPSMLE procedure in the

following Subsection 4.3.1.

19



Figure 2: Simulation results snapshot for � = 0.5; 10

(a) 1000 runs, � = 0.5, N(0, 1)
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Note: Stochastic noise ✏t and {"i}Ni=1

drawn from given normal distributions. Black dotted lines with ⇥ depict the true �.
Grey full lines depict sample means of estimated �. Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour
represents results for N = 100, normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the
length of generated time series.

the model equilibrium that can generally take the form of a (multiple) steady state(s), cycles, or
even chaotic behaviour. The intensity of choice � is also crucial for its conceptual importance—it
represents the dominant approach how the boundedly rational choices of agents are mathematically
modelled in the current literature (see the ABS origin of models in Tables 1 and 2).

Despite of its relative simplicity, the setting is otherwise very challenging as capturing the
e↵ect of the switching coe�cient � is generally di�cult (see Section 2). Moreover, algorithm with
a single starting point for the numerical optimisation and new random draws of the parameters
gh and bh, h 2 {2, 3, 4, 5} for each independent run require very robust performance of the search
procedure.

4.3.2. Qualitative results

We primarily aim to verify whether important theoretical properties of the estimator, the
consistency and asymptotic e�ciency, also hold in small samples for the model. In Figures 2 and 7, 8
in Appendix 2 we depict and describe a ‘snapshot’ of simulation results for four interesting values of
the intensity of choice � 2 {0, 0.5, 3, 10} combined with three specifications of the stochastic noise:
✏t ⇠ N(0, 22), ✏t ⇠ N(0, 1) and ✏t ⇠ N(0, 0.12). First, we can clearly observe how the method is able
to reveal the true value of � demonstrated by black dotted lines with ⇥. Grey full lines depict the
sample means of estimated � and closely follow the true line. The small departures are naturally
mainly observable for the smallest considered number of runs 100 [subfigures (a) and (b)] and for
the smallest considered length of generated time series (number of observations) t = {100, 500}.
Equally importantly, we can clearly observe the consistency of the estimator and how the e�ciency
of the mean estimate increases simultaneously with increasing length of generated time series t as
well as the precision of the kernel estimation N . The precision is demonstrated by di↵erent shades
of grey dashed lines depicting 2.5% and 97.5% quantiles of estimated parameters �. The shift
from a relatively orderless pattern observed for 100 runs [subfigures (a) and (b)] to very exemplary
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theoretically expected pattern with grey dashed lines nearly aligned according to increasing kernel
estimation precision (from light grey farther and dark grey closer to the true/mean value) in (e)
and (f) is obvious. The di↵erence is much evident between N = 100 (light grey) and two higher
values, for N = {500, 1000} dashed lines are often very close to one another. The line representing
N = 500 actually appears closer to the mean value in some cases, indicating the su�ciency of the
N = 500 kernel approximation precision. Increasing statistical validity of results is apparent via
rising number of runs starting at 100. Number of runs 500 seems su�cient in terms of only small
di↵erences compared to 1000 runs. In the right column of Figure 8 for � = 10 the shift from the
case of 100 runs (b) to the case of 1000 runs (f) is not so substantive as in the previous cases and
we assign this to a more stable behaviour of the NPSMLE method under various settings caused
by value of � farther from 0. But on the other hand, consistency of the estimator and the growth of
e�ciency of the mean estimate with increasing lengths of generated time series t and the precision
of the kernel estimation N is well observable also in this setting.

Focusing further on the right column of Figure 7 and the left column of Figure 8, we moreover
observe an important result from the economic interpretation point of view of the � parameter
value. Although only the non-negative values of � have an economic interpretation,16 in simulations
we also allow for negative estimated values (for details of the simulation setup please refer to
Subsection 4.1 and Subsection 4.2) to test the capability of the method even for such extreme
values and to avoid the upward bias of the estimator. However, the most important result is that
using a reasonably robust setting [e.g. number of runs 500 and precision of the kernel estimation
N = 500] we obtain more than 97.5% non-negative observation (represented by the bound of the
2.5% quantile to be found in the positive half-plane) for � = 10 even when length of generated
time series t = 100, for � = 3 when t

.
= 500, and for � = 0.5 when t

.
= 1000. At the same moment

95% of observation appear reasonably close to the true value, far from the numerical bounds
of the parameter space imposed to make the constrained optimisation computationally feasible.
These features have important favourable consequences for application of the method to datasets
of various lengths—we should be able to detect even very weak signs of behavioural switching in
long-span daily financial data, but also stronger signs of switching in macroeconomic data where
typically lower-frequency time series of shorter lengths are available. W.r.t. the complexity of the
estimation issue in the nonlinear HAM setting with five repeatedly randomly generated strategies
(as well as to many other estimation attempts from Section 2 that have found the switching
coe�cient insignificant), we consider our results very promising. The most important property
of the estimation method in the current setting is the ability to distinguish between statistically
significant and insignificant � and this objective is well achieved.

Figures 7 and 8 also allow for comparison between estimation of models with and without
switching. The left column of Figure 7 represents the model without switching (� = 0), the right
column and Figure 8 illustrate estimation performance for models with switching (� > 0).

4.3.3. Quantitative results

Now we move from the graphical to the quantitative description of simulation results. We
now consider only the second most robust setting combination which proved optimal, i.e. results
based on 1000 random runs, length of generated time series (number of observations) t = 5000, and
the kernel estimation precision N = 1000 i.i.d. draws from given distribution. First we comment

16

� < 0 for which we technically allow implies switching of agent towards less profitable strategies, unambiguously
economically irrational behaviour.
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Table 3: Results for � estimation with normal noise

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

� (g) b�, N(0, 1) (h) b�, N(0, 0.12)

0 .00 .00 .11 -.24 .23 0% .01 .01 .22 -.45 .46 0%
.1 .11 .11 .08 -.09 .30 0% .11 .11 .12 -.10 .30 0%
.5 .50 .51 .14 .23 .81 0% .50 .50 .35 -.35 1.30 0%
1 1.00 1.01 .23 .66 1.45 1% .99 1.00 .50 -.19 2.46 0%
3 3.07 3.59 1.41 2.35 7.93 3% 2.99 3.05 1.00 1.48 5.86 0%
5 5.61 7.23 3.30 3.82 14.41 8% 4.99 5.05 1.21 3.75 6.81 1%

10 11.20 13.43 6.31 5.16 28.13 23% 9.99 9.99 2.22 7.57 11.64 3%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

on the robustness of the method w.r.t. various noise specifications used both for generating the
stochastic term ✏t in Equation 29 as well as for N i.i.d. draws, {"i}Ni=1, to simulate N i.i.d. random
variables, {X✓

t,i}Ni=1, used for the kernel estimation of the conditional density. Again, following
results o↵er a direct comparison between estimation of models with and without switching as first
rows of all panels in all tables in Subsection 4.3.1 always represent the model setting without
switching (� = 0).

Interpreting results in Tables 3 and 10 in Appendix 2, the big picture seems promising
for the NPSMLE method. We can observe relatively stable results over a reasonable grid of noise
specifications and therefore the important issue of the robustness of the method is verified. Focusing
on first columns containing the sample medians and means of the estimated values (denoted ‘Med.’
and ‘Mean’), we reveal the ability of the method to recover the true values of the intensity of choice
� coe�cient with very high precision over all noise specification. Median value is generally more
precisely estimating the true value but the di↵erence is negligible in majority of cases. Only for two
most intensive noises in combination with higher values of the � coe�cient, the mean estimate gives
considerably better results. Comparing the third columns displaying related standard deviations
we observe statistical significance of estimates for majority of combinations of the true � and
the magnitude of noise. Generally the specifications with the smallest noises [subparts (a) and
especially (b)] appear markedly more precise in estimating the lowest �s = {0, 0.1, 0.5} with only
noise specification (b) having real ability estimate zero � with reasonable precision as we can
observe using 2.5 (LQ) and 97.5 (HQ) quantile figures. On the other hand, the specifications with
almost largest noises [subparts (i) and especially (h)] appear the most precise in estimating higher
�s = {1, 3, 5, 10}. Values of the intensity of choice � very close to zero, � = {0.1, 0.5}, are the
most di�cult to estimate. This is, however, almost the extreme case of no switching of agents
among possible strategies in which the dynamics of the model is restrained as there is only a small
di↵erence of the model behaviour compared to the agents’ absolute inertia case with � = 0. These
are crucial findings highlighting the necessity of a proper noise specification within the estimation
procedure. Larger noises seem to stabilise the system but overshadow the e↵ect of switching under
low �s and therefore favour estimation of higher �s. Lower �s require small noises for the e↵ect
of switching to be detectable. A puzzling result is then the subpart (h) with the largest noise
intensity N(0, 22) estimating the lowest �s with high precision.

Another emerging issue is the occurrence of ‘Not a Number’ outcomes from some runs of the
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NPSMLE procedure. This is reported via the NN column as the percentage of the ‘NaN’ outcomes.
Technical reason behind the ‘NaN’ emergence is that the HAM algorithm does not converge into
a stationary series in the particular run and the NPSMLE algorithm therefore produces a ‘NaN’
outcome. As we can see in Table 10, this situation is typical mainly for small distribution intervals of
the stochastic noise ✏t that do not always su�ce to stabilise the system [see subparts (a) and (b)] and
for highest values of the intensity of choice � [see subparts (i) and especially (j)] increasing switching
dynamics in the model, particularly when these two e↵ects combine together. We can interpret
this as a specific kind of censorship of results as these runs are not considered for calculation of
reported values. We do not consider results with high number of ‘NaN’ outcomes relevant within
this analysis, however, we keep displaying them to retain the completeness of provided information
as well as an optimal warning signal of an improper behaviour of the system under scrutiny. We can
also observe signs of upward and downward biases of the estimates in cases of largest distribution
intervals of the stochastic noise ✏t when combined with highest �s [see subparts (i) and (j)] but this
might just be an e↵ect of this data censorship as all such cases are accompanied with occurrence
of ‘NaN’ outcomes. Finally, one might notice that our grid of noise specifications in Table 10 to a
great extent covers the entire range of reasonable values w.r.t. the ‘NaN’ emergence issue a↵ecting
estimation results crucially both for the smallest noises [see subparts (a) and (b)] as well as for
the noise specifications with the largest standard deviation [subpart (j)]. Decreasing or increasing
the noise intensity behind these bounds in specified setup leads to even less relevant results and
therefore is not considered. As the ‘NaN’ emergence censoring estimation results might be a serious
issue, it definitely needs more assessment in the next part of the study (see Subsection 4.3.5 and
Subsection 4.3.6 for further discussion).

As we need to reduce the large grid of stochastic noise specification for other applications in
Section 4, taking all discussed aspects into account, we select the two most ‘successful’ specifica-
tions, namely N(0, 0.12)—especially for larger � = {3, 5, 10}—and N(0, 1)—especially for smaller
�s = {0.5, 1}).17 They produce estimates with low standard errors for majority of �s considered,
they are not accompanied with excessive number of ‘NaN’ outcomes, and they appear reasonably
realistic w.r.t. the empirical application in Section 5 where we analyse time series of price deviations
implying higher standard deviations of the assumed stochastic market noise. Figure 9 in Appendix
2 depicts smooth histograms of selected estimated �s based on these three noise specifications. One
can clearly observe how the noise specification N(0, 0.12) performs best for � = {3, 10}, N(0, 1)
for � = 0.5, and N(0, 22) for � = 0.

4.3.4. Behaviour of the simulated log-likelihood function

Kristensen and Shin (2012, pg. 80–81) define a set of regularity conditions A.1–A.4 regarding
the model and its associated conditional density that ensure su�ciently fast convergence of ĉ �! c
and thus asymptotic equivalence of ✓̂ and ✓̃. These conditions basically impose restrictions on
the data-generating functions and the conditional density that is being estimated. With regard
to data-generating functions, authors argue that the “smoothness conditions are rather weak, and
satisfied by most models”. For the conditional density function, they state that “the assumptions
are quite weak and are satisfied by many models”. However, for the HAM, we are not able to
verify these conditions analytically and we must rely on graphical computational tools. Another
important issue regards the identification of parameters in the model assuring uniqueness of the
set of estimates.

17Moreover, for extreme cases �s = {0, 0.1} noise N(0, 22) seems optimal.
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Figure 3: Shape of the simulated log-likelihood function
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Note: Results based on 100 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000.
Stochastic noise ✏t and {"i}Ni=1

drawn from given normal distribution. Black dotted vertical lines depict the true �s. Bold
black full lines depict sample averages.

For both purposes, we draw the simulated log-likelihood function and verify an existence of a
unique maximum. We depict simulated log-likelihood functions for the same four interesting values
of the intensity of choice � 2 {0, 0.5, 3, 10} combined with three specifications of the stochastic
noise: ✏t ⇠ N(0, 22), ✏t ⇠ N(0, 1) and ✏t ⇠ N(0, 0.12) as in Subsection 4.3.2. In Figure 3 we
clearly observe very smooth shape of the functions over the entire assessed domain with a unique
maximum generally shared for all of 100 random runs. Bold black full lines then represent sample
averages over these 100 runs and brings the aggregate information,18 which is, however, obvious
also directly from the set of 100 original simulated log-likelihood functions. Based on generally
smooth shapes and unique optima of the simulated log-likelihood functions we assume that the

18The only violation of the smoothness of the averaged function appears in subpart (d) with relatively high value
� = 10 where for several runs the model diverges. Disruptions of the averaged function are thus only of the technical
origin when depicting, not the feature of the function itself.

24



regularity conditions are met for the HAM and the identification of parameters is also assured.

4.3.5. Robustness check

To assess the robustness of our general model setting, we contrast the results in Table 10
with several setup modifications. First, in Table 11 in Appendix 1 we consider 10 times higher
gross interest rate R = 1 + r = 1.001 representing real market risk free rate. This daily value
unrealistically represents circa 28.4% annual risk free interest rate that can nonetheless serve as
a useful robustness check. The only considerable e↵ect appears in the increased probability of a
‘NaN’ outcome for the smallest distribution intervals of the stochastic noise ✏t [see subparts (a),
(b), and (c)]. Conversely, for larger distribution intervals of the stochastic noise ✏t the results
are comparable and largely similar. This is another important finding mainly for the empirical
application in Section 5 where time series of price deviations are likely to be associated with higher
standard deviation of the assumed stochastic market noise. The robustness of the method w.r.t.
assumption of the real market risk free rate therefore relaxes the need of a very precise derivation
of this parameter for various countries and historical periods and the reasonable approximation
R = 1 + r = 1.0001 representing circa 2.5% annual risk free interest rate can be generally used in
Section 5.

Second, we test the ability of the estimation method to provide unbiased estimates even if
bounds of the parameter space are o↵-centered, more specifically shifted up by 50% of actual � to
h�0.5�, 3.5�i for � > 0 and to h�0.375, 625i for � = 0. When results of this testing summarized
in Table 12 in Appendix 1 are compared to the original results in Table 10, we clearly observe
expected shift in the 2.5 (LQ) and 97.5 (HQ) quantiles of the estimate distribution but the ability
of the NPSMLE method to reveal true parameter with high precision remains una↵ected and the
standard deviations are to a great extent similar to the original settings. We therefore verified that
there is no need of an excessive precision of the unconstrained pre-estimation via which we define
bounds of the parameter space for the constrained optimisation.

We further test how is the NPSMLE method performance a↵ected by assumption of another
than normal distribution of the stochastic noise ✏t. For that purpose we select uniform distribution
both for its simplicity as well as for its feature of being the maximum entropy probability distribu-
tion of its family of symmetric probability distributions. As the assumption of normal distribution
of stock market noise seems reasonably realistic (see discussion in Subsection 4.1), the uniform
distribution provides a less realistic candidate for the robustness check. We consider two princi-
ples for comparison of our original results with the results assuming the uniform distribution—the
first based on almost identical covered intervals (Table 13 in Appendix 1) and the second based
on the same variance (Table 14 in Appendix 1). We therefore define a grid of 10 uniform noise
specifications

1. that cover the same intervals as are covered by their respective normal counterparts by the
99.74% of the probability mass;19

2. with the same variances as their respective normal counterparts.20

Contrasting original results in Table 10 with results based on the uniform distribution of the
stochastic noise, we basically verify the assumption of Kristensen and Shin (2012) that F" can be

19I.e. h�3SD, 3SDi, where SD stands for the standard deviation of the respective normal noise specification.
20Variance (or the second centralized moment) of the continuous uniform distribution is defined as (b�a)2

12

, where
a, b are the minimum and maximum values of the distribution’s domain.
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Table 4: Results for � estimation with normal noise, fixed gh & bh

� (a) b�, N(0, 0.12) (b) b�, N(0, 1)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 .00 .13 -.26 .28 0% -.00 -.00 .05 -.10 .09 0%
.1 .11 .10 .12 -.10 .30 0% .10 .10 .06 -.02 .22 0%
.5 .49 .49 .11 .26 .71 0% .50 .51 .17 .19 .85 0%
1 1.00 1.00 .07 .86 1.14 0% 1.00 1.01 .18 .67 1.40 0%
3 3.01 3.00 .13 2.75 3.23 0% 3.03 3.12 .57 2.49 5.28 0%
5 5.00 5.00 .23 4.56 5.47 0% 5.19 6.42 2.70 4.25 13.65 4%

10 10.00 10.00 .12 9.77 10.23 0% 11.04 12.28 4.64 6.07 24.11 19%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

any known distribution. The overall result are largely similar and the observed di↵erences can be
attributed mainly to di↵erent shapes of the normal and uniform distribution. In the case of identical
covered intervals (Table 13) we observe slightly lower probability of ‘NaN’ outcome occurrence for
smallest intervals [subparts (a), (b), and (c)], but higher for largest intervals [subparts (i) and (j)].
In the case of identical distribution (Table 14), the ‘NaN’ outcome occurrence is comparable with
the normal distribution. In both cases the e�ciency of estimates tends to be higher than using the
normal distribution and intervals between the 2.5 (LQ) and 97.5 (HQ) quantiles are narrower in
majority of specifications. We can assign this to di↵erences in shape of compared distribution—
the highest probability density of the normal distribution around the zero mean combined with
possibility of extreme observations, both apparently negatively a↵ecting the e�ciency of estimates.

One of the most challenging concepts in the estimation method setting is the repeated
random generation of parameters gh and bh for each from 1000 runs. In Table 4 we abandon this
setup feature, fix parameters gh and bh randomly before the loop and use the very same figures
for all 1000 runs. Although the repeated random generation of trend and bias parameters for
each run is one of the robustness cornerstones of the analysis in Section 4, it is of our interest to
provide the comprehensive picture of the NPSMLE method performance. Next in this section, we
only compute and depict results for two specification of the stochastic noise which appeared the
most useful based on results in Table 10, namely N(0, 0.12) and N(0, 1). Comparing results in
Table 4 with respective counterparts Table 10 [subparts (h) and (i)], aside a minor reduction of the
‘NaN’ emergence probability we observe overall significant reduction of standard deviations of �
estimates. Fixing trend a bias parameters thus naturally makes the system more predictable and
leads to more e�cient estimates.

Tables 15, 16 in Appendix 1 report results of another robustness check of the methodology
focused on various distributions of belief parameters gh and bh (see Equation 18). To recap, in the
general model we follow the previous work of Barunik et al. (2009); Vacha et al. (2012); Kukacka and
Barunik (2013) and thus trend parameters gh are drawn from the normal distribution N(0, 0.42)
and bias parameters bh are drawn from the normal distribution N(0, 0.32). Here we relax this
assumption using a range of reasonable variances defining the distribution of beliefs’ parameters:
{0.12, 0.22, 0.32, 0.42, 0.62, 0.82, 1, 1.22}.

Analysing results in Tables 15 and 16, we observe the general ability of the method to reveal
accurately the true value of the intensity of choice � for the vast majority of combinations of the
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simulation grid as well as for both noise specifications. On the other hand, in specific cases we can
observe signs of an upward bias, values on the border of statistical significance, or considerable
probability of ‘NaN’ outcome emergence. The upward bias is observable only in Table 16 associated
with the larger specification of the stochastic noise N(0, 1) and for higher values of �. However, the
upward bias tendency disappears with increasing variances of the distribution of beliefs’ parameters.
This is another example of somehow puzzling behaviour for which we cannot find any obvious
explanation. The problem with statistical insignificance of estimates is naturally mostly evident
for distribution specification with small variances and small values of �, both technically inhibiting
the dynamics of the model. Increasing the variance of beliefs’ distribution associated with higher
values of randomly generated belief parameters gh and bh, we generally obtain a richer model
dynamics which can be more simply and more e�ciently estimated. However, there is a crucial
trade-o↵ in form of model divergence and results censorship by ‘NaN’ outcomes reported in the
NN column. This situation is generally more likely for higher values of the intensity of choice �
as well as for the higher potential values of belief parameters gh and bh. For instance, the two
highest values of our simulation range: {1, 1.22} induce serious results censorship (up to 96%) for
the majority of values from the discrete range of �s, particularly when combined the stochastic
noise N(0, 1) that is generally associated with considerably higher probability of ‘NaN’ outcome
emergence. Small stochastic noise specifications generally do not exhibit signs of upward biases
but can be also largely a↵ected by ‘NaN’ outcomes. We refer the reader to additional results of
the stochastic noise specification N(0, 10�12) and N(0, 10�14) summarized in Table 17, Table 18
in Appendix 1. The inference based on such filtered result is invalid and we concur the discussion
about the ‘NaN’ outcomes originated in Subsection 4.3.3 via describing this third21 aspect triggering
the divergence of the model leading to ‘NaN’ outcome of the NPSMLE procedure. We observe a
somewhat nontrivial complex interplay between the intensity of the stochastic noise, estimation
e�ciency, and probability of ‘NaN’ outcomes. Higher probabilities are associated both with tiny
noises N(0, 10�14) and N(0, 10�12) (see Tables 17 and 18) as well as with larger noise N(0, 1)
(Table 16) when compared to N(0, 0.12) (Table 15). However, the mitigating impact on the results
censorship in specific setups is far from solving the censorship issue. When comparing results
of N(0, 0.12) and N(0, 1) in terms of e�ciency, one would conclude that the wider distribution
interval ✏t ⇠ N(0, 1) increases the e�ciency of estimates. But the opposite holds when comparing
N(0, 10�14) and N(0, 10�12) in Appendix 1. We observe this partly ambiguous relation between
stochastic noise distributions intervals and values of � also in the original results in Table 10.

To sum up hitherto findings regarding the robustness of the NPSMLE method w.r.t. various
setup specifications, we face an interesting ‘two-sided’ trade-o↵. Basically, we are able to estimate
relatively well a model exhibiting reasonably rich dynamics. This is, however, on the one hand
inhibited assuming:

1. low values of the intensity of choice �,

2. small distribution intervals of the stochastic noise ✏t,

3. or distribution specifications of belief parameters gh and bh with small variances,

producing insu�cient dynamics or fragile stability of the system. But the other hand also by:

1. too high values of the intensity of choice �

21Along with very small distribution intervals of the stochastic noise ✏t and high values of the intensity of choice
�.
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Table 5: Results for � estimation with various combined noises I.

� (a) b�, ✏t ⇠ N(0, 0.12), (b) b�, ✏t ⇠ U(�
p
12

2

⇥ 10�1,
p
12

2

⇥ 10�1),

{"i}Ni=1

⇠ N(0, 1) {"i}Ni=1

⇠ U(�
p
12

2

,
p
12

2

)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .29 -.47 .47 0% -.01 -.00 .29 -.48 .47 0%
.1 .10 .10 .11 -.09 .29 0% .10 .10 .11 -.09 .29 0%
.5 .50 .50 .58 -.47 1.45 0% .51 .51 .58 -.47 1.46 0%
1 .97 .99 1.13 -.86 2.89 0% .99 .98 1.12 -.90 2.87 0%
3 2.87 2.84 3.30 -2.67 8.60 0% 2.87 2.86 3.43 -2.77 8.72 0%
5 4.89 4.87 5.31 -4.48 14.35 0% 5.24 5.32 5.70 -4.69 14.63 0%

10 10.96 11.42 10.56 -8.40 28.99 0% 11.19 10.21 11.65 -9.95 29.17 1%

(c) b�, ✏t ⇠ N(0, 1), (d) b�, ✏t ⇠ U(�
p
12

2

,
p
12

2

),

{"i}Ni=1

⇠ N(0, 0.12) {"i}Ni=1

⇠ U(�
p
12

2

⇥ 10�1,
p
12
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⇥ 10�1)

100% 100%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from the same distributions with di↵erent variances, R =
1.0001. Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of
observations t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard
deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal
digits. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.

2. large distribution intervals of the stochastic noise ✏t,
3. or distribution specifications of belief parameters gh and bh with large variances,

potentially causing model to diverge and therefore censoring the results. This seems to be another
of challenging issues for the empirical application of the NPSMLE method.

The last part of Subsection 4.3.5 addresses an important question of what happens if wrong
stochastic noise assumption is used to perform the NPSMLE? This can either be a right dis-
tribution, but with wrong parameters, or a completely di↵erent distribution. This question is
especially important w.r.t. empirical application in Section 5 because in real world data we are
rarely able to ascertain proper noise. For the purpose of analysing this issue, we present results
of various combinations of di↵erent distributions used for random generation of stochastic noise ✏t
and {"i}Ni=1. In Table 5 we report the case where stochastic noise ✏t and {"i}Ni=1 are drawn from
the same distributions with di↵erent variances, Table 19 in Appendix 1 then displays results when
di↵erent distributions with various variances (same as well as di↵erent) are combined together.
Basically, we use combinations of normal and uniform distributions and for di↵erent variances we
use specifications with 10 time higher or lower values. Conclusions for this robustness check are
very clear and can be summarized into several points:

1. when a distribution with (10 times) higher variance is used for generating stochastic noise ✏t
then for kernel approximation of the conditional density ct(x|v; ✓) via {"i}Ni=1, the NPSMLE
method is inapplicable as this situation leads to complete ‘NaN’ outcome. The reason is
very di↵erent from a usual ‘NaN’ occurrence caused by HAM divergence. In this case,
apparently, the method itself is not able to approximate the true conditional density using
{"i}Ni=1 generated from 10 times ‘smaller’ distribution. This holds irrespective of whether
same or di↵erent distributions are used [see subparts (c) and (d) of Table 5 and (g) and (h)
of Table 19];

2. when a distribution with (10 times) lower variance is used for generating stochastic noise ✏t
then for kernel approximation of the conditional density ct(x|v; ✓) via {"i}Ni=1, the NPSMLE
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method works from the technical point of view but produces completely statistically insignif-
icant estimates and very random uniform distribution of estimated values as captured in HQ
and LQ columns where the quantile values almost copy the borders of the parameter space,
this also holds irrespective of whether same or di↵erent distributions are used;

3. when di↵erent distributions with the same variances are used [compare subparts (a), (b) and
(c), (d) of Table 19], the order and shapes of distributions matter considerably. In our case,
if stochastic noise ✏t is generated from the normal distribution and {"i}Ni=1 is generated from
the uniform distribution [subparts (c) and (d)], we obtain considerably better estimates with
markedly lower standard deviations then if the order is opposite [subparts (a) and (b)]. As
both distributions have identical mean and variance, there is not much than shape of the
distribution defined by higher moments to make di↵erence.

These findings very strongly confirm the need of a proper noise specification for the empirical
application of NPSMLE which is at the same moment one of the most important findings from the
analysis of the original results from Table 10.

4.3.6. 2-type model estimation

An important advantage of FABMs is that their dynamics is mostly driven by a few crucials
parameters. As a result, we might promisingly attempt to estimate all essential coe�cients simul-
taneously and thus we do not need any rigorous criteria for selection. In the Brock and Hommes
(1998) setting we select estimated parameters consistently with the current literature (see Tables
1 and 2), i.e. the key switching parameter � and the behavioural belief coe�cients. The other
coe�cients, e.g. the risk aversion a, the conditional variance of excess returns �2, or the risk free
rate R are simplified already in the original model as constants and shared by all investor types.
The model is then theoretically derived based on those assumptions. These parameters only in-
fluence the absolute values of the profitability measures Uh but not their relative proportions (R
additionally a little bit adjusts the model output xt). Thus we can naturally consider them not
influencing dynamics of the model as described in Subsection 4.1.

A natural subsequent step of the NPSMLE method testing is thus a multiple parameter
estimation in which we simultaneously estimate the intensity of choice � and agents’ belief coef-
ficients gh and bh defining individual trading strategies in the 2-type and the 3-type models for
which both theoretical as well as empirical rationale exists in the current literature as indicated
in Chen et al. (2012, pg. 191, 207). With reference to Biondi et al. (2012, pg. 5534), “it has
been advocated that the two broad categories of chartism and fundamentalism account for most
of possible investment strategies”. The aim of this analysis is to assess the performance of the
NPSMLE method in estimating other model parameters then solely the intensity of choice �.

First, we study the most simple system consisting of two trading strategies, where funda-
mental strategy again appears in the market by default (g1 = b1 = 0). Based of the knowledge
gained in Subsection 4.3.1, we define a discrete grid of combinations of the true intensity of choice
� and the chartistic beliefs g2 and b2 representing the second-type trading strategy to cover a
purposeful range of values w.r.t. issues studied in the previous sections. To keep a reasonable
number of combinations and lucidity of results, we opt for � = {0, 0.5, 3, 10}. In defining a grid
of chartistic beliefs, we also cover various combinations of trend following (g2 > 0), contrarian
(g2 < 0), upward-biased (b2 > 0), and downward-biased (b2 < 0) strategies based on multiples
of standard deviations from the general model setting: 0.5⇥, 1⇥, 2⇥, 3⇥. We refer the reader to
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the first column of Table 20 in Appendix 1 for detailed specification. We again employ only two
specification of noise, namely ✏t ⇠ N(0, 0.12) and ✏t ⇠ N(0, 1).

4.3.7. Quantitative results

In Table 20, Table 21 in Appendix 1 we summarise the simulation results. Basically, we
are able to confirm all main findings from the single parameter � estimation simulation analysis.
First, the method is generally able to reveal accurately the true values (see columns reporting
sample medians and means denoted ‘Md’ and ‘Mn’, respectively) of estimated parameters also in
the 3-parameter simultaneous estimation case. Especially belief coe�cients g2 and b2 [subparts
(b) and (c)], that are of central importance in this section, are estimated overall significant and
with almost surprisingly high precision. The estimation precision of the � parameter is not directly
comparable to previous results as the setting of the 2-type model is di↵erent from the general model.
Notwithstanding, we still get generally conformable figures. Second, the ‘two-sided’ trade-o↵ (see
Subsection 4.3.5) related to a reasonably rich model dynamics restricted from both sides plays
an important role. We again clearly observe the relative estimation ine�ciency in case of setting
combinations with small values of the intensity of choice � = 0, 0.5, especially when combined with
small values of belief coe�cients g2 and b2 (the upper half of Table 20 and Table 21). On the other
hand, for high values of belief coe�cients g2 and b2 (the bottom half of Table 20 and Table 21) we
experience considerable number of model overflows leading to significant censorship of results and
thus generally confirming findings from � estimation exercise w.r.t. various distributions of beliefs
parameters (Tables 15 and 16). These e↵ects to a large extent prohibit serious results interpretation
for reported combination with the smallest values of belief coe�cients g2 = ±0.2 and b2 = ±0.15 as
well as for the combination with the highest values of belief coe�cients g2 = ±1.2 and b2 = ±0.9.
We also observe the nontrivial complex interplay between the intensity of the stochastic noise,
estimation e�ciency, and probability of ‘NaN’ outcomes [in subparts (d), ‘NN’ columnd] detected
within the analysis of the general model. Here, a stabilising e↵ect is associated with the wider noise
interval N(0, 1) leading to a significant decrease of the number of model overflows (on the contrary,
in the case of 3-type model estimation in Subsection 4.3.10, the stability is higher for the narrower
noise N(0, 0.12) specification). This may paradoxically lead to a seemingly lower e�ciency as the
divergent runs are not filtered out—this e↵ect is e.g. observable in Table 21 for combinations with
� = 10, g2 = ±0.4, and b2 = ±0.3 where � estimates are often biased upwards. The standard
deviations of these empirical estimates is significantly larger compared to Table 20 due to the e↵ect
of estimates close to the upper bound of the parameter space that would otherwise be likely filtered
out in the case of smaller stochastic noise in the system. We further observe a prevailing upward
bias tendency in � estimates for smallest values of belief coe�cients g2 and b2. When it comes to
e�ciency of g2 and b2 estimates, the setup with noise interval N(0, 0.12) produces markedly more
precise estimates but the overall statistical significance of estimates is apparent for both setups.

Although we report all combination of trend following (g2 > 0), contrarian (g2 < 0), upward-
biased (b2 > 0), and downward-biased (b2 < 0) strategy specification mainly from technical reasons
and the analysis of the model dynamics goes beyond the scope of this paper, we can observe
some patterns regarding the beliefs’ combination. For instance the e�ciency of the estimation is
considerably higher for trend following (g2 > 0) beliefs than for contrarians (g2 < 0), but setups
with trend following beliefs are more vulnerable to overflows causing ‘NaN’ outcomes. On the other
hand the direction of the bias parameter b2 does not seem to play any important role based on
reported results.

At the end of the 2-type model analysis, it is, however, important to stress that this is the
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extreme case of the most simple setting more vulnerable to potential extreme model dynamics.
Nonetheless, this simple setting is the cornerstone in the current HAM estimation literature (see
Section 2) and therefore it needs to be properly elaborated also for the new NPSMLE method.
The favourable results presented above give promise for the function of the method also in more
complex settings.

4.3.8. Behaviour of the simulated log-likelihood function

To verify smoothness conditions and identification of parameters in the 2-type model estima-
tion case, we aim at depicting shape of simulated log-likelihood functions also for the simultaneous
estimation of three parameters. As we can hardly demonstrate the 4D shape of the resulting sim-
ulated log-likelihood function, we depict sub-log-likelihood functions in 2D and 3D making out the
global visualisation when combined together.

Figures 4 and 10 in Appendix 2 demonstrate simulated 2D sub-log-likelihood functions for
the single parameters intensity of choice � 2 {0.5, 3, 10}, trend coe�cient g2 = 0.4, and bias coef-
ficient b2 = 0.3 estimation (keeping the two others fixed) combined with the two most ‘successful’
specifications of the stochastic noise ✏t ⇠ N(0, 0.12) and ✏t ⇠ N(0, 1) found in Subsection 4.3.3.
We again simply observe very smooth shapes and unique maxima generally shared for all random
runs. Moreover, consistent to Subsection 4.3.3 findings, small � = 0.5 is more precisely detectable
assuming stochastic noise ✏t ⇠ N(0, 1) [subfigure (b) of Figure 4], higher � 2 {3, 10} assuming
stochastic noise ✏t ⇠ N(0, 0.12) [subfigures (c) and (e) of Figure 4], upward bias tendency of b� is
clear for the stochastic noise ✏t ⇠ N(0, 1) in subfigures (d) and (f) of Figure 4 due to very flat
shape of the log-likelihood function above the positive subpart of the domain, and finally the belief
parameters b2 = 0.3 and g2 = 0.4 are very well detected in both cases, however the performance of
estimators is more e�cient for smaller stochastic noise ✏t ⇠ N(0, 0.12). Next, in Figure 11 in Ap-
pendix 2 we visualise 3D simulated sub-log-likelihood functions based on all possible combinations
of three parameters of interest, keeping one of them fixed, for the model setting with: � = 0.5,
g2 = 0.4, b2 = 0.3 and both stochastic noise specifications. The smoothness of the surface generally
keeps retained also in the 3D visualisations and regions of possible maxima are well detectable via
red color although the 3D depiction cannot provide such detailed and ‘zoomed’ view as the 2D
visualisations in Figures 4 and 10. For some combinations of parameters the model is numerically
unstable and thus for specific subsets of the domain plane the shape is not well defined. However,
these areas are always far from maxima regions. Parameters g2 and b2 seem to be relatively well
identified which is further confirmed quantitatively in Subsection 4.3.7. As expected, the most
challenging is revealing the � coe�cient in which direction the surface is very flat for a large in-
terval of the domain. These findings are largely in accord with conclusions of Bolt et al. (2014,
pg. 15) and Hommes and Veld (2015) who claim that “the other parameters can to a large extent
compensate for changes in �” and report very flat shape of the likelihood function for the intensity
of choice selection. In any case, based on these results we again generally assume that the regu-
larity conditions are met and the identification of parameters is assured also for the 2-type model
estimation.

4.3.9. Likelihood-ratio test

Previous sections have shown that the NPSML estimation method does a fairly good job in
distinguish between various �s. As a next step we might be interested how capable the estimation
method is in a rigorous statistical comparison between static and switching models. As the static
version of the model with � = 0 and the switching version are nested, i.e. the less complex static
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Figure 4: Simulated sub-log-likelihood functions for � estimation
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the true �s. Bold black full lines depict sample averages.
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model is derived via a restriction on � from the switching model, we can apply the usual likelihood
ratio test to assess the relative goodness of fit between models with and without switching. For
this purpose Table 20 and Table 21 further display information about tests of model fit in sub-
part (d). ‘L-rat’ column denotes the likelihood ratio of the null static (i.e. restricted) model vs.
the alternative switching model, ‘2�LL’ is the test statistics of the log-likelihood ratio test being
approximately �2 distributed with 1 degree of freedom (because only the switching parameter is
restricted), and ‘p-v’ is related p-value of the test. Application of the likelihood ratio test seems
natural in this situation, nevertheless the Monte Carlo simulation framework brings several imper-
fections. On the one hand, simulated data smartly avoid the problem of model misspecification,
on the other hand the goodness of fit test is designed rather for comparison based on a single
empirical dataset. In our situation, new variables and a di↵erent dataset are randomly generated
in each of 1000 random runs and the test is then based on the aggregate mean values over all runs.
But since the standard deviation of individual maximum log-likelihoods is negligible compared to
their value (around 1%), aggregation does not cause any appreciable loss of information. A second
imperfection is related to the relative flatness of the log-likelihood function in the dimension of
the restricted switching coe�cient � for a large interval of the domain (see detailed discussion in
Subsection 4.3.8). Although the estimation method detects precisely the true intensity of choice
especially for combinations of higher values of �, stronger strategies, and lower stochastic noise
specification, due to flat likelihood the test exhibits only a moderate capability of distinguishing
between the restricted and the unrestricted model. Translated into p-values of the test to reject
the null of the static model, in the most distinct cases the value reaches 30% which is far above
usual econometric levels. Inspecting subpart (d) of Table 20 and Table 21, we observe expected
behaviour but generally low power of the test. For all true � = 0, the likelihood ratio is equal to
1 and the p-value remains 100%. Increasing true � and strength of strategies, the likelihood ratio
and the p-value naturally decrease (as the test statistics ‘2�LL’ increases), but the pace of the
progress is low for the selected range of �s.

4.3.10. 3-type model estimation

Results of simultaneous estimation of 5 parameters in the 3-type model including three basic
strategies: fundamental represented by g1 = b1 = 0 and two chartistic defined in the Table 22,
Table 23, can be found in Appendix 1. We keep the strategy of defining a grid of chartistic
beliefs from Subsection 4.3.6 based on various combinations of trend following (g2 > 0), contrarian
(g2 < 0), upward-biased (b2 > 0), and downward-biased (b2 < 0) strategies and the same multiples
of standard deviations from the general model setting. Conclusion are generally in accord with the
results of the 2-type model estimation, the di↵erence is mainly in e�ciency of estimates that is by
nature lower than for the 2-type model. However, combining two chartistic strategies we also gain
some new knowledge about the system behaviour. For instance, in case of a combination of two
trend following strategies (g2 > 0, g3 > 0), it is rather complicated for the NPSMLE method to
distinguish between impacts of these two strategies leading to lower statistical significance of both
estimates compared to other combination of trend following and contrarian strategies. Conclusions
regarding the nontrivial interplay between the intensity of the stochastic noise, estimation e�ciency,
and the probability of ‘NaN’ outcomes seem to be somewhat mixed in this markedly more complex
case as the estimation e�ciency is comparable for both stochastic noise specifications N(0, 0.12)
and N(0, 1), and the stability of the system in terms of ‘NaN’ outcomes is higher for N(0, 1) which
is the opposite tendency than observed within the analysis of the 2-type model estimation.
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5. HAM estimation on empirical data

Equipped with the knowledge from the Monte Carlo study in Section 4, we broaden the topic via
an empirical application and estimate the Brock and Hommes (1998) model using cross section of
world stock markets. We analyse S&P500 and NASDAQ for the U.S., DAX and FTSE and for
Europe, NIKKEI 225 and HSI for Japan and Hong Kong, respectively.

5.1. The estimation setting

Compared to the simulation study in Section 4, the setting of models estimated using real
data is less challenging and in terms of statistical validity also less computationally demanding.
On the contrary, the estimation algorithm is a bit technically more complicated as the structure of
the real world data is far away from the regularity of the simulated dataset. Concurring findings
about the su�cient setting of the NPSMLE method from Section 4, we compute results for 1000
random runs, number of observations t = 5000, and the kernel approximation precision is set to
N = 500. On the other hand, because of a problematic numerical stability of the model when real
data analysis is introduced we increase the number of starting points for the numerical optimisation
to 8.22 The other setting remains the same as defined in Subsection 4.1. More importantly, as the
e↵ect of the more complicated structure of the code with multiple initial points, the paralellisation
of the computational procedure cannot be maintained via the MATLAB because of technical
assumptions of the paralellisation function. Therefore we are left with simple and relatively slow
standard one-core type of calculations.

Moreover, based on main findings of Section 4, the proper intensity of stochastic market noise
is crucial for the correct function of the NPSMLE method. A wrong stochastic noise specification
is likely to influence the behaviour of the system and validity or results to a great extent. Hence
we do not longer use the grid strategy to ensure the robustness of result as e.g. the stochastic noise
intensity on various real markets is immensely unpredictable variable. Leaving this idea, we instead
add the intensity of the stochastic market noise to the list of estimated parameters. Generally,
we thus apply a simultaneous unconstrained multivariable function estimation of all interesting
parameters: agents’ belief coe�cients defining individual trading strategies gh and bh, the intensity
of choice �, and the intensity of market noise, which is defined as a fraction of the standard
deviation of the noise term and the standard deviation of the data and denoted as noise intensity.

First, we estimate the most simple 2-type model including two basic strategies only—
fundamental one represented by implicitly defined g1 = b1 = 0 and chartistic one which is to
be estimated. Within this setting, we simultaneously estimate four parameters of interest—�, g2,
b2, and the noise intensity. To support the numerical stability of the estimated system, we con-
strain the intervals for the starting points random generation to h�0.5, 0.5i for �, h1.3, 2.3i for g2,
h�0.2, 0.2i for b2, and h0.4, 0.9i for the noise intensity. Nonetheless, as the algorithm is designed
to find an optimum of an unconstrained multivariable function, it can freely leave these initial
intervals during the search procedure.

We then continue with the estimation of the 3-type model including three basic strategies—
fundamental and two di↵erent chartistic strategies which are to be estimated. Based on results
of the 2-type model estimation, we assume zero bias of both the trend following as well as the

22Based on a preliminary analysis, 8 starting points are su�cient to filter out issues related to numerical instability
on the system.
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contrarian strategy, i.e. b2 = b3 = 0. The simultaneous estimation of four parameters of interest—
�, g2, g3, and the noise intensity—technically requires a modification of the algorithm setting
to the constrained multivariable function estimation as the two di↵erent strategies—the trend
following g2 > 0 and the contrarian g3 < 0 need to be strictly distinguished using the following
constrains: g2 2 h1.8, 2.8i, g3 2 h0,�0.5i.

5.2. Fundamental price approximation

Approximation of the fundamental price is inevitably the most ‘challenging’ issue of the entire
empirical section. Unfortunately, in the original framework of the Brock and Hommes (1998)
asset pricing model of a simple stylised stock market there is no hint about how the empirical
fundamental value might be derived.23 Thus, we are left with the existing literature and following
Winker et al. (2007); ter Ellen and Zwinkels (2010); Huisman et al. (2010), the fundamental price
is approximated as a Moving Average (MA) value. Winker et al. (2007) assume as the proxy for
the fundamental price a MA over the last 200 observations of the DM/USD exchange rate time
series for the period 1991/11/11 to 2000/11/9. ter Ellen and Zwinkels (2010) use the MA of the
Brent and WTI Cushing oil monthly USD prices over 24 months, i.e. from 1984/1 to 2009/8.
Huisman et al. (2010) employ the MA of European forward electricity daily historical prices over
3 year for the base-load calendar year 2008 forward contracts. Authors set the MA window to 3
as a calibration result of the optimal length.

Long-term and short-term MAs are also commonly used by practitioners in trading to ex-
trapolate divergence from the fundamental value in technical analysis. Since the fundamental value
of stocks is essentially unknown, market practitioners often tend to at least estimate whether the
stock is over or under-valued, whether the possible mispricing is small or large, and whether the
gap is going to increase or whether a soon correction is more likely. As the Brock and Hommes
(1998) model is also formulated in deviations from the fundamental price, the MA approach seems
to be one of reasonable guidances. The MA filtering is the cornerstone of technical analysis and
therefore widely used by active traders: Allen and Taylor (1990, pg. 50) present empirical evidence
on the perceived importance of technical analysis among London foreign exchange dealers and refer
to prevalent mechanical indicators such as trend-following rules: “buy when a shorter MA cuts a
longer MA from below”. Taylor and Allen (1992) survey chief foreign exchange dealers operating
in London and report that 64.3% of organisations use MAs and/or other trend-following analytical
techniques. Brock et al. (1992, pg. 1735) refer to MA technical rules as to one of the two simplest
and most widely used: “when the short-period MA penetrates the long-period MA, a trend is
considered to be initiated”. Lui and Mole (1998, pg. 541, 535) repeat largely analogical survey
as Taylor and Allen (1992) among Hong Kong foreign exchange dealers and report that MAs “are
seen to be the most useful technical technique at all three horizons” (i.e. intraday, intramonth,
> 1 month) and that “technical analysis is considered . . . significantly more useful in predicting
turning points”. Goldbaum (1999, pg. 70, 71) describes the way how in practice the MA trading

23In contrast, another class of HAMs of FOREX markets successfully utilises the Purchasing Power Parity between
two countries as the approximation of the fundamental value of the currency exchange rate [see e.g. Vigfusson (1997);
Westerho↵ and Reitz (2003); Manzan and Westerho↵ (2007); Wan and Kao (2009); Goldbaum and Zwinkels (2014);
Verschoor and Zwinkels (2013)]. Boswijk et al. (2007) and de Jong et al. (2009a) employ the static Gordon growth
model for equity valuation proposed by Gordon (1962), which is, however, infeasible for the empirical validation of
the original Brock and Hommes (1998) model. Some other papers simply use a RW formula to drive the fundamental
price (De Grauwe and Grimaldi, 2005, 2006; Winker et al., 2007; Franke, 2009).
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rules translate into buy-sell indicators: “when the short period moving average, say the average
price of the security over the last five trading days, rises above the long period moving average,
say the average of the price over the last 200 trading days, this is a buy indicator. When the
short period moving average drops below the long period moving average, this is a sell indicator”.
Sullivan et al. (1999, 1999) summarise that “MA cross-over rules . . . are among the most popular
and common trading rules discussed in the technical analysis literature”. To quote from Isakov and
Hollistein (1999), “the most popular moving average rule used is (1,200), where the short period is
one day (in fact it is the index itself) and the long period is 200 days (almost a year)”. According
to authors, “the academic literature has shown that the best results were obtained when the short
average is one day”. Closely related to our work, “motivated by the popularity of MA strategies in
real markets and empirical studies” Chiarella et al. (2006, pg. 1748) propose a model in which the
demand of chartists is determined by the di↵erence between a long-term MA and current market
price.

For the MA setting in this analysis, we keep to the strategy of a wide range of possible settings
to ensure robustness of our findings. Within this work, we present results for two specific window
lengths, namely 61 and 121 days. For the robustness check, we also tested other variants ranging
from one month to two years, namely 21, 241, and 481 days, leading to comparable results.24

Instead of usual ‘historical’ MA taking into account only the past information for given time, we
use the ‘centred’ MA taking into account the same number of observation back as ahead. Both MA
versions were analysed and found to produce to a large extent comparable results. The centred
MA is therefore suggested to reduce the delay of the information flow. Moreover, the centred MA
incorporates a convenient property that the price converges to it by definition that is exactly a
feature one would expect from the fundamental value. Although undoubtedly our fundamental
price approximation di↵er from the true fundamental value, the MA filter produces a series of an
anticipated structure as depicted in Figures 12 and 13 in Appendix 2 for S&P500 and in Figures
14 and 15, 16 and 17, 18 and 19, 20 and 21, 22 and 23 for other respective indices.

5.3. Data description

We use daily closing prices of six world stock market indices as the base of our empirical
dataset. For S&P500, we retrieve the closing prices of the index using the Wolfram Mathematica
FinancialData function covering the period from 1994/02/23 to 2013/12/31, i.e. 5000 observations
in total. For other indices, only the starting dates of the dataset vary by reason of di↵erent public
holidays a calendar configurations around the world, i.e. 1994/04/22 for DAX,25 1994/11/02 for
FTSE, 1994/02/23 for NASDAQ, 1993/09/03 for NIKKEI 225, and 1994/06/13 HSI. For each
index we nonetheless also obtain comparable amount of 5000 observations with the same end date
2013/12/31. The fundamental price is simultaneously calculated as the centred MA as described
in Subsection 5.2 and subtracted from the actual price following Equation 9.26 Thus we obtain
deviations xt from the fundamental price that are the subject of further estimation. The span of
the data is represented in Figure 12 and 13 where the original time series of prices pt is depicted in
the (a) part of the Figure together with the fundamental price p⇤t approximation and the (b) and (c)
parts depict the implied series of deviations from the fundamental price xt = pt � p⇤t . Descriptive

24Results of this robustness testing are available upon request from authors.
25For DAX the data are available from 1990/11/26, i.e. 5850 observations till 2013/12/31.
26For the calculation of the fundamental price we need some extra data points preceding and succeeding the defined

period, the complete dataset retrieved and used therefore consists of ‘4999 + MA window length’ observations.
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Table 6: Descriptive statistics of empirical xt time series

Data, MA period Mean. Med. Min. Max. SD Skew. Kurt. LQ HQ AC AC x2

t

SP500, 61 -.03 2.0 -145.2 113.0 26.5 -.65 5.5 -61.4 50.7 .87 .73
NASDAQ, 61 -.10 2.4 -753.5 639.0 81.8 .03 13.6 -170.7 147.9 .89 .81

DAX, 61 -.28 10.1 -939.6 716.1 163.2 -.50 5.4 -361.8 311.6 .89 .80
FTSE, 61 -.12 7.5 -702.5 404.6 122.7 -.58 5.1 -275.4 235.7 .88 .73

HSI, 61 .35 24.3 -4253.2 3463.5 562.2 -.29 6.7 -1186.7 1130.0 .90 .74
NIKKEI 225, 61 .16 6.8 -2249.8 1900.2 434.7 -.30 4.2 -953.8 799.4 .89 .77

SP500, 241 -.60 2.8 -252.9 160.1 48.4 -.64 4.5 -112.7 85.7 .96 .90
NASDAQ, 241 -1.78 1.6 -756.4 1253.7 168.1 1.01 11.3 -350.9 322.0 .97 .96

DAX, 241 -3.35 1.4 -1531.3 1242.6 330.4 -.21 4.5 -728.0 669.1 .97 .94
FTSE, 241 -.73 11.9 -1072.4 721.0 210.6 -.56 4.4 -479.4 388.5 .96 .90

HSI, 241 2.26 -5.5 -6505.5 7099.5 1177.6 .18 5.7 -2424.1 2282.0 .98 .94
NIKKEI 225, 241 -6.38 -22.6 -3497.8 2872.4 860.0 -.20 3.3 -1821.4 1581.3 .97 .92

Note: Sample means, medians, minima, maxima, standard deviations (SD), skewnesses, kurtoses, 2.5% (LQ) and 97.5%
(HQ) quantiles, and autocorrelations (AC) are reported. Figures are rounded to 1 or 2 decimal digits.

statistics of xt series for all indices and two MA lengths for the fundamental value approximation
are summarised in Table 6.

5.4. Static NPSMLE estimates

In the estimation, our main goal is to verify the HAM ability to describe world stock market
data and whether we obtain estimates of a reasonable precision using the NPSMLE method. A
special focus is also devoted to possible di↵erences and similarities between particular indices. For
reader’s convenience we briefly repeat the structure of the estimated model model:

Rxt =
H
X

h=1

nh,t(ghxt�1 + bh) + ✏t, (31)

nh,t =
exp(�Uh,t�1)

PH
h=1 exp(�Uh,t�1)

, (32)

Uh,t�1 = (xt�1 �Rxt�2)
ghxt�3 + bh �Rxt�2

a�2
, (33)

where ✏t is an i.i.d. noise term sequence with normal distribution N (0, sd2). Please, consult
details of the model setting in Subsection 4.1. To recap, in the 2-type model (H = 2) we simulta-
neously estimate parameters �, g2, b2, and the noise intensity. In the 3-type model (H = 3) we
simultaneously estimate parameters �, g2, g3, and the noise intensity.

5.4.1. Full sample estimates of the 2-type model

We start with the full sample static estimation summarised in Table 7. Generally, we can
observe broad similarities across all indices and markedly statistically significant estimates of a
positive belief parameter g2 revealing superiority of trend following over contrarian strategies on
markets. In contrast, the estimates of the intensity of choice—the switching parameter �—and
the bias parameter b2 are largely statistically insignificant. While for the bias this is an expected
result as there is no obvious reason why the trend following strategies should be somehow biased
in the long-term, the insignificance of b� is an important and interesting result. We thus contrast a
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Table 7: Empirical results of the 2-type � model estimation

Data, MA period (a) b� (b) bg
2

(c) bb
2

(d) \noise intensity (e) LL

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD

SP500, 61 .015 .040 .122 1.567 1.587 .233 .009 .003 .121 .653 .656 .108 -1.486 -1.491 .074
NASDAQ, 61 .002 .006 .146 1.717 1.715 .166 -.005 -.003 .092 .609 .609 .079 .117 .115 .038

DAX, 61 .001 .018 .112 1.640 1.646 .215 .008 .001 .117 .590 .601 .099 -1.259 -1.264 .081
FTSE, 61 -.000 .008 .113 1.671 1.668 .201 .001 .004 .117 .597 .602 .092 -.988 -.995 .059

HSI, 61 -.004 -.002 .150 1.724 1.727 .164 -.003 -.001 .098 .566 .570 .069 -.145 -.147 .036
N225, 61 .008 .021 .100 1.601 1.619 .210 .011 .007 .121 .593 .601 .103 -1.544 -1.546 .085

SP500, 241 -.021 -.009 .195 1.878 1.875 .127 .007 .001 .111 .388 .397 .064 .029 .019 .074
NASDAQ, 241 .038 .047 .189 1.882 1.869 .152 -.009 -.003 .105 .423 .419 .078 .422 .424 .111

DAX, 241 .014 .012 .247 1.932 1.928 .109 .007 .003 .103 .292 .315 .070 .328 .309 .096
FTSE, 241 .010 .012 .162 1.871 1.858 .143 .008 .004 .114 .408 .409 .071 -.153 -.157 .085

HSI, 241 .008 .006 .204 1.914 1.908 .130 .004 .002 .103 .351 .366 .080 .369 .363 .118
N225, 241 .003 .012 .147 1.865 1.850 .165 -.000 -.000 .125 .394 .392 .101 -.793 -.793 .160

Robustness check

SP500 monthly, 13 -.016 -.031 .272 .886 .891 .238 .006 .002 .121 .863 .869 .104 -3.660 -3.666 .054
SP500 weekly, 13 -.085 -.103 .228 .953 .971 .224 -.003 -.001 .121 .865 .869 .098 -2.336 -2.349 .057
SP500 weekly, 49 .044 .089 .146 1.119 1.168 .241 .005 .002 .118 .724 .720 .103 -2.626 -2.615 .073

SP500 R=1.001, 61 .016 .035 .112 1.585 1.607 .241 .004 .004 .121 .656 .654 .110 -1.480 -1.485 .073
SP500 R=1.001, 241 .001 -.001 .196 1.889 1.880 .134 .005 .002 .111 .393 .397 .062 .029 .019 .073

SP500 mh=40, 61 -.032 -.041 .149 1.659 1.673 .173 -.002 -.002 .114 .584 .587 .075 -1.393 -1.402 .038
SP500 mh=40, 241 -.028 -.020 .298 1.908 1.905 .107 -.004 -.003 .099 .338 .355 .056 .100 .086 .054
SP500 mh=80, 61 -.047 -.054 .177 1.644 1.664 .182 .003 .003 .115 .573 .576 .065 -1.385 -1.392 .032

SP500 mh=80, 241 -.036 -.014 .309 1.908 1.906 .105 -.002 -.004 .097 .335 .352 .054 .106 .091 .056

Note: Results are based on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution.
Sample medians, means, and standard deviations (SD) are reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are
rounded to 3 decimal digits.
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large subpart of the HAM estimation literature (see Section 2) but confirm the main results of e.g.
Westerho↵ and Reitz (2005); Boswijk et al. (2007); de Jong et al. (2009b); ter Ellen et al. (2013);
Bolt et al. (2014). Since the heterogeneity in trading regimes is confirmed by the significance of
g2, this might not worrying as discussed in Boswijk et al. (2007, pg. 1995) or Hommes (2013, pg.
203) who emphasise that “this is a common result in non-linear switching regression models, where
the parameter in the transition function is di�cult to estimate and has a large standard deviation,
because relatively large changes in �⇤ cause only small variation of the fraction nt. Teräsvirta
(1994) argues that this should not be worrying as long as there is significant heterogeneity in the
estimated regimes.” Furthermore, as Huisman et al. (2010, pg. 17, 20) point out, “the significance
of the intensity of choice is not a necessary condition for the switching to have added value to the fit
of the model” and “the non-significant intensity of choice, as this indicates that the switching does
not occur systematically”. The magnitudes of trend parameter estimates bg2, that keep roughly
between 1.6 and 1.9, might seem large, but it is important to note that they influence the price
change only from circa 50% implied by the insignificance of the intensity of choice � keeping the
population ratio of the two strategies stable around 0.5/0.5.

It is now important to contrast empirical findings with simulation results of Section 4. Based
on the analysis of the confidence bands in Figure 7, our computational setting based on 1000 random
runs, number of observations t = 5000, and the kernel approximation precision N = 500 provides
us with a reasonably high precision of the intensity of choice � estimates. Figure 7 (bottom part)
and further quantitative analysis clearly show that even for a very small � = 0.5, when estimating
a time series of 5000 observations and considering 5% significance level, � is markedly statistically
significant. Thus, if there is some behavioural switching present in our empirical data, it should
have been detectable under similarly robust setting.

Di↵erences across markets can be partly seen in the (d) column of Table 7 between well

e�ciently estimated values of the \noise intensity. Although the di↵erence are often on the border
of statistical significance, it might be worth mentioning that the highest stock market noise intensity
has been estimated for the U.S. indices, specifically S&P500 in case of MA61 based fundamental
value and NASDAQ in case of MA241 based fundamental value. Conversely, the lowest values has
been estimated for DAX and the di↵erence is circa 30% in case of the MA241 based fundamental
value.

The level di↵erences in values between the upper part of Table 7 depicting results for the
MA61 fundamental price approximation and the middle part with results for the MA241 is perhaps
mainly the technical feature of di↵erent MA windows. It is therefore important to consider absolute
values of estimated coe�cient with this respect and compare both versions. Nevertheless, the
main results concerning the positive sign and statistical significance of bg2 and insignificance of
b� and bb2 keep similar as well as the main detected relative relationships between values of the

\noise intensity. Our most important results thus demonstrate robustness w.r.t. the choice of the
fundamental value specification. The lower values of the \noise intensity might be explained by
reason of a better fundamental value approximation using bigger MA window.

5.4.2. Behaviour of the simulated log-likelihood function

We verify the smoothness conditions and unique maxima presence of the simulated log-
likelihood functions that are crucial for the parameter detection and identification also within the
empirical application. However, the 5D surface resulting from simultaneous estimation of four
parameters makes the graphical demonstration even more complicated than in Subsection 5.4.2.
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Figure 5: Simulated sub-log-likelihood fcns. for single parameters
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Note: Results based on 100 random runs, S&P500 data, given MA fundamental price approximation, number of observations
t = 5000, and the kernel estimation precision N = 1000. {"i}Ni=1

drawn from normal distribution. Black dotted vertical lines
depict estimated parameters (see Table 7).
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Therefore, we again depict sub-log-likelihood functions in 2D and 3D, assuming other parameters
fixed at estimated values from Table 7.

Figure 5 demonstrates partial 2D shapes of the simulated sub-log-likelihood function in
direction of individual parameters. Generally we observe a bit rough shape in detail, but very
consistent performance of the estimation method over all 100 random runs leading to unique
maxima consistent with the full sample estimates in all cases. The shape is a↵ected by the structure
of the real world data which is far away from the regularity of the simulated dataset. For this reason,
we also adapted the computational algorithm by increasing the number of initial points (see details
in Subsection 5.1) so that it is able to deal well with the not-completely-smooth surface of the
log-likelihood function. Figure 24 in Appendix 2 then visualises 3D simulated sub-functions for all
combinations of four estimated parameters, keeping the other two fixed. The relative smoothness of
the surface and well detectable regions of possible maxima keep generally retained corresponding to
simulation results from Subsection 4.3.8. For more ‘extreme’ combinations of parameters the model
is again numerically unstable and we do not depict the surface for these regions. Equivalently to full
sample estimation results, parameters � and g2 seem to be well detectable, while in the b2 direction
[subfigures (b), (d), and (f)] the surface is very flat. Interestingly, based on visual inspection of
subfigures (g) and (h) we suspect a small potential upward bias for the noise intensity estimates.

5.4.3. Robustness check of the 2-type model

For the robustness check of the validity of estimated values (results are reported in Table 7,
bottom part), we not only use more than single MA specification of the fundamental value, but also
consider several modification of the setup and even di↵erent frequency of the data. Equipped with
the knowledge from previous analysis, we again only compute results for S&P500. Aside utilisation
of weekly and monthly data, we also follow the robustness testing from Section 4 and estimate the
model using

1. 10 times higher assumed market risk free rate R = 1.001;

2. nontrivial memory of agents defined via parameters mh = {40, 80} 8 h.27

Three new dataset cover S&P500 weekly data from 1994/02/28 to 2013/12/30 (i.e. 1035
observations) and monthly data from 1994/03/01 to 2013/12/02 (i.e. 238 observations). Selected
periods cover the same span as the original daily dataset. The MA lengths have been selected so
that they resemble most closely the 61 and 241 days for the fundamental value specification, i.e.
13 and 49 weeks in case of weekly data and 13 months for monthly data. The assumed market
risk free rate has been adjusted to reflect the modified data periodicity, namely to R = 1.0005 for
weekly data and R = 1.002 for monthly data.

27Memory process is a substantial modification of the model structure. We employ the similar approach as
Barunik et al. (2009), Vacha et al. (2012), and Kukacka and Barunik (2013), i.e. Equation 29 is extended via
memory parameters mh:

Uh,t�1

=
1
mh

mh�1X

l=0


(xt�1�l �Rxt�2�l)

ghxt�3�l + bh �Rxt�2�l

a�

2

�
. (34)

The memory for each individual strategy is then randomly generated from the uniform distribution U(0,mh),
therefore the average memory length resembles circa the one- or two-month period, i.e. 20 or 40 days.
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The most important findings of the original empirical analysis of six world stock market
indices remain una↵ected under the robustness burden. The b� parameter still reveals evident
statistical insignificance, the same does the bias parameter bb2. Di↵erences are basically observable
at the level of trend parameters bg2 and \noise intensity, but the behaviour keeps patterns uncovered
within the original analysis— bg2 slightly increases and \noise intensity decreases moving from MA61
to MA241 fundamental value approximation. Results based on monthly and weekly data show
considerably lower bg2, the values fall even under 1 for the MA13 fundamental value specification—
instead of strong trend chasing strategy only the weak trend chasing strategy is detected—but this
seems to be again an implied technical side-e↵ect of a small MA window that produces more average
dynamics of the price deviations series. Monthly data with insu�cient length of the estimated series
(238 observations) expectedly, based on findings of the NPSMLE method performance analysis in
Section 4, perform the worst statistical fit compared to weekly and daily dataset. Memory only
slightly increases the model fit and as the interconnected e↵ect decreases the \noise intensity.
Nothing surprising is therefore found within the validity check of original results which prove
robust to various data frequency specifications as well as modifications of interesting parameters
in the model.

5.4.4. Full sample estimates of the 3-type model

Estimation of a more-flexible 3-type model reveals markedly similar big picture as the esti-
mation of the 2-type model. For the matter of computational time, based on our knowledge from
the 2-type model estimation revealing large similarities across all estimated stock market indices we
again only compute results for S&P500. Estimated parameters are reported in Table 8. The only
new conclusion is a statistical insignificance of the contrarian strategy represented by coe�cient bg3
(exactly specified in the model and defined via the constraint g3 < 0). Although point estimates
reported via median and mean values are negative, this is only an e↵ect of the enforced g3 < 0
constraint. The distribution mass of estimates from all 500 runs concentrates close to 0 as depicted
in Figure 25 in Appendix 2. The optimised function is likely to be very flat in the dimension of
g3 parameter because the e↵ect of a very weak contrarian strategy is overshadowed if combined
with a very strong trend following strategy. The estimate of the intensity of choice � keeps its
statistical insignificance and the trend following strategy coe�cient bg2 retains its positive sign as
well as high statistical significance. The absolute value of bg2 is naturally higher because the trend
following strategy impacts the price via only the 1/3 weight in the 3-type model compared to 1/2
weight in the 3-type model (in both cases conditional on insignificant b�). Taking those weights into
account, we obtain very similar impact of the trend following strategy in both models. Comparing
results for the MA61 and MA241 fundamental price approximation shows the very same e↵ects as
within the 2-type estimation, under MA241 we reveal somewhat stronger trend following strategy
and lower intensity of stochastic noise.

5.5. Rolling NPSMLE estimates

To confirm the robustness of the full sample static estimates in Subsection 5.4 over time,
we further investigate how the HAM estimation results might possibly change between 1994 and
2014. Utilising almost 20 years of data (5000 observations) used for the static estimates, we
now estimate the HAM on one year (240 days) rolling samples with steps of two months (40
days). Based on results of the simulation Monte Carlo study in Section 4, the one year period
still represents relatively su�cient length of the estimated time series for a reasonable statistical
inference based on the NPSMLE method. At the same time it is a relatively short period to detect
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Table 8: Empirical results of the 3-type � model estimation

Data, MA p. (a) b� (b) bg
2

(c) bg
3

(d) \noise i. (e) LL

Med. SD Med. SD Med. SD Med. SD Med. SD

SP500, 61 -.003 .082 2.502 .175 -.123 .111 .550 .047 -.127 .022
SP500, 241 .007 .050 2.674 .217 -.032 .142 .403 .045 -.289 .094

Note: Results are based on 500 random runs, number of observations t = 5000, and the kernel estimation
precision N = 500 i.i.d. draws from normal distribution. Sample medians and standard deviations (SD) are
reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are rounded
to 3 decimal digits.

possible structural breaks in the data.28 Due to high computational burden we have significantly
decreased the robustness of the algorithm setting: we display results based on 200 runs and the
number of initial points for the numerical optimisation has been decreased to 4. We also always
discard only 10 observations as the initial stabilising periods. The ‘cost’ of such relaxation of the
computational setting is reflected in the lower e�ciency of estimates and the standard deviations of
rolling estimates are expected higher compared to full sample static estimates. On the other hand,
the rolling analysis still provides clear insight into the model dynamics and credible conclusion.

5.5.1. Rolling estimates of the 2-type model

We depict rolling estimation results of the S&P500 in Figure 27 in Appendix 3. Rolling
estimate results for other indices are reported in Figures 28, 29, 30, 31, and 32. Interpreting
primarily results in Figure 27, we can observe relatively stable behaviour of the model throughout
the entire investigated period. The bg2 and \noise intensity estimates keep steadily around their
long-term static estimates and exhibit high statistical significance as traceable in the (c) and (d)
subparts of the Figure depicting rolling standard deviation for all coe�cients. The b� and bb2 keep to
zero and are statistically insignificant all the time. This is something we generally expect to observe
as the full sample b� estimates (see Table 7) are close to zero, hence the dynamics is restrained
and the model in fact boils down to a simple model which we further analyse in Subsection 5.6.
Nonetheless, we might detect some signs of dynamics of bg2 e.g. around the Lehman Brothers
bankruptcy and related U.S. recession between December 2007 and June 2009 in the MA61 case,
but these shifts are strongly bellow the level of statistical significance and also largely dependent
on the window length of the MA fundamental price approximation as one can see when comparing
the (a) and (b) part of Figure 27. Some slight dynamics is also detectable for \noise intensity
which slightly increases in turbulent periods. The only clear dynamics seems to be observable at
the level of the log-likelihood LL. With this respect we highlight the fact that a direct comparison
of rolling log-likelihoods is methodologically disputable because it is based on di↵erent rolling
sub-samples. However, we argue that since rolling datasets keep the same length and overlap
by circa 83% between adjacent steps, the overall evolution of the LL pattern provides us with
a valuable information. The fit is relatively higher during rather tranquil periods (e.g. at the
beginning and the end of the sample period or between 2003 and 2007) and on the contrary it
generally decreases during volatile periods (well detectable in Figures 12 and 13), especially during
highlighted recessions. This might seem puzzling as during the high volatile periods the trend

28Various combinations of rolling sample windows and steps had been used in the preliminary analysis without
impacting the overall results, e.g. comparing one month and one-half year steps. The outcomes of the preliminary
analysis are available from authors upon request.
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Figure 6: Rolling behaviour of the SD of the bg
2

estimate I.

(a) S&P500 MA61 fundamental price approximation
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(b) NASDAQ MA61 fundamental price approximation
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Note: Bold black full line depicts standard deviation of the bg
2

estimate. Results are based on 200 random runs, length of
the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes (marked as vertical
black lines) and recession periods (depicted in grey).

following strategy is likely to attract attention of market participants, however such behaviour is
in accord with the overall stability of the rolling estimates close to long-term values.

A potential dynamics is, however, much more observable at the level of standard deviations
[see detached Figure 6 and subparts (c) and (d) of Figure 27]. The standard deviation of the
trend following coe�cient g2 clearly jumps up in volatile periods such as recession around the
WTC 9/11 attack, Lehman Bankrupcy, or downgrade of USA ranking to AA+. This can be
interpreted as a sign of increased presence of contrarians (nonetheless, still being a large minority)
during such turbulent stock market periods. Although the method faces di�culties to adjust
the average absolute value of the trend-following coe�cient bg2 over 500 repeated runs, it detects
increasing population of contrarians via less e�cient estimates of the e↵ect of trend followers. A
similar pattern is observable for the \noise intensity and LL. This is again nothing surprising as
econometrics models generally perform better in periods of market stability. Using larger MA241
fundamental value approximation naturally decreases the flexibility of the estimation to detect
e↵ects of single events and so the captured dynamics is considerably more stable.

We also observe some interesting signs of a specific and economically well interpretable dy-
namic behaviour for other indices illustrated in Figure 33 in Appendix 2. For NASDAQ behaviour,
although otherwise considerably more stable compared to S&P500, the worth mentioning is es-
pecially the drop of the standard deviation of b� and increase of the standard deviation of the
trend parameter bg2 around the Asian Crisis in 1997 and the Dot-com Bubble Burst in 2000. Since
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NASDAQ is especially used for trading technological and IT companies, this makes somewhat sense
as technological companies are often based or produce in Asia and IT companies were hit by the
Dot-com Bubble much more than other sectors. Similar behaviour is not observed for the more
general S&P500. For both European indices DAX and FTSE the model on the level of standard
deviations does reflect the crisis around the Rubble devaluation in 1998, again not captured by
S&P500. The e↵ect of both worldwide crises in 2001 and 2008-2009 is also captured, but not the
Asian Crisis of 1997. Interestingly, the HSI data representing Asia captures the e↵ect of 1997 Asian
Crisis as well as the worldwide cries of 2008-2009 and 2011, but does not reflect neither the 1998
Rubble devaluation, nor WTC 2001/9/11 attack. Behaviour of model under NIKKEI 225 data
resembles much more the patterns observed for S&P500 than for HSI. All this can be attributed to
increased presence of contrarians at specific periods on specific markets detected via less e�cient
estimates of the e↵ect of trend followers. Finally for some indices, namely NASDAQ, FTSE and
HSI (but not for the other three) we can observe some intriguing negative correlation between
standard deviations of b� and bg2 in some turbulent periods.

In general, although we can reveal some patterns of interpretable dynamics for individual
indices, the rolling approach in particular strongly supports the stability of model behaviour over
time and thus confirms the validity of full sample estimation results from Subsection 5.4.1.

5.6. Estimation of market fractions

Our findings from the performed estimations in Subsection 5.4 and Subsection 5.5, mainly
the overall statistical insignificance of the intensity of choice b�, statistically insignificant sizes of bg3
coe�cients of contrarian strategies, and stability of rolling coe�cients, lead us to another, this once
truly significant modification of the model. Interpreting these results, hitherto model specifications
do not seem to correspond to the data fully. In the 2-type model, the insignificant b� coe�cient
implicates stable population ratio of trading strategies n1,t/n2,t

.
= 0.5/0.5, which means that the

population of fundamentalists is forced to be of almost the same magnitude as the population
of chartists throughout the entire span of the dataset. Thus the model in fact boils down to a
simple weighted AR(1) process and di↵erent types of traders cannot be identified because they
do not switch over time. In such a case the trend and bias parameters bg2 and bb2 (or bg3 in the
3-type model) can be viewed as nuisance parameters—they to a large extent lose the original
model interpretation and we cannot fully trust the estimated magnitudes of these parameters.
Although we understand that it is generally very complicated for the estimation method to detect
some systematic evolutionary switching between trading strategies when it is exposed to the full
dataset (and therefore the average zero b� coe�cient seems reasonable), we cannot agree with such
a strong assumption of similar population magnitudes for both strategies. Moreover, contrarians
in the 3-type model, who technically account for 1/3 of the population size as the b� coe�cient
is steadily insignificant, in fact behave as fundamentalists in terms of their price impact because
sizes of bg3 coe�cients are small and statistically insignificant. These findings from the analysis of
the 2-type and 3-type model estimation imply two important conclusions. First, the 3-type model
does not really help us to capture additional features of the data-generating process and rather
deviates the implied market fraction. Second, it suggests there might be more fundamentalists
than chartists on real markets and therefore the almost fixed population ratio of trading strategies
n1,t/n2,t

.
= 0.5/0.5 as the result of the 2-type model estimation is much likely not capturing the

real market population proportions.
Therefore, as a consequence of previous findings, we trivialise the simulated model (Equa-

tion 27, Equation 28, and Equation 29) via disabling the evolutionary switching behaviour and
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fixing the population ratio of trading strategies to n1,t/n2,t = const. A rationale of this step
is further supported by overall stability of rolling estimates. Equation 28 and Equation 29 are
now replaced by Equation 36 and the coe�cient n1, which we further call percentage fraction of
fundamentalists, is to be estimated instead of the switching coe�cient �:

Rxt =
H
X

h=1

nhfh,t + ✏t ⌘
H
X

h=1

nh(ghxt�1 + bh) + ✏t, (35)

n1 = 1� n2, (36)

where H = 2 in the 2-type model. Interval for the starting points random generation is
constrained to h0.3, 0.9i for fraction and to h1.5, 2.5i for g2, the other setting remains the same
as in Subsection 5.4. The modified setup keeps the logic of aforementioned findings and does not
distract the structure of the original model. On the other hand, the population ratio of trading
strategies n1/n2 and implied percentage fraction of fundamentalists on the market is now a direct
subject of the interest.

5.6.1. Full sample estimates of the 2-type fraction model

Outcomes of the full sample static estimation of all six stock market indices are reported
in Table 24 in Appendix 1. The main interest lies in the behaviour of the new variable fraction
representing the percentage market fraction of fundamentalists (g1 = b1 = 0). All other variables
behave at average very similar as in the 2-type � model estimation, moreover we do not longer
observe considerable distinctions caused by the MA window length for the fundamental value
approximation.

The \fraction coe�cient is strongly statistically significant with it value closely around 0.56,
leaving only 44% of the market population to chartistic strategies. The model therefore suggests
overall proportional dominance of the fundamental strategy on all investigated world stock markets.
Estimates of the trend following coe�cient g2 are generally higher compared to values for the 2-
type � model estimation reported in Table 24 but one must realise that within the 2-type fraction
model the trend following strategy is relatively weaker in terms of impact to the market price
(see Equation 13) because the proportion of these strong trend chasers is lower than 0.5. If we
consider market proportions incorrectly implied by the 2-type b� coe�cient and related bg2 and

compare it to \fraction and related bg2 estimated in this section according to Equation 13, we
deduce almost similar impact. This confirms our suspicion about an improper specification of

the model with insignificant b� and we corrected for this misspecification introducing \fraction
specification via Equation 36. Evolutionary switching between strategies can be now captured via

changes in the \fraction coe�cient in its smooth form using the rolling approach as asserted by
Teräsvirta (1994, pg. 217): “if one assumes that the agents make only dichotomous decisions or
change their behaviour discretely, it is unlikely that they do this simultaneously. Thus if only an
aggregated process is observed, then the regime changes in that process may be more accurately
described as being smooth rather than discrete.” Nonetheless, the rolling approach does not reveal

any significant dynamics in the behaviour of \fraction which again only confirms the validity of
full sample estimation results from Subsection 5.6.
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5.6.2. Behaviour of the simulated log-likelihood function

Conclusions for the smoothness conditions and unique maxima presence of the simulated
log-likelihood functions for the � model (see Subsection 5.4.2) hold generally identically for the
fraction model. Here we only depict sub-log-likelihood functions in 2D assuming other parameters
fixed at estimated values from Table 24. In Figure 26 in Appendix 2 we demonstrate 2D shapes
of the simulated sub-function in direction of individual parameters. Di↵erences compared to the �
model are threefold:

1. in the fraction direction [subfigures (a) and (b)] the function behaves more ‘nicely’;

2. in the b2 direction [subfigures (e) and (f)] we do not observe any optimum, thus the identifi-
cation of the parameter seems problematic;

3. on the contrary, we do not longer suspect the potential upward bias for the noise intensity
estimates [subfigures (g) and (h)] compared to Subsection 5.6.2.

5.6.3. Robustness check of the 2-type fraction model

We employ an identical (except for now irrelevant e↵ect of memory) robustness check as
in the previous case for the � model also for the fraction model. Results of the weekly and
monthly data estimation and the model assuming higher market risk free rate are reported in
Table 24 (bottom part). Basic conclusions for the robustness and validity check of the � model

from Subsection 5.4.3 hold identically for the fraction model. The \fraction, g2, and \noise intensity
generally reveal strong statistical significance, the opposite does the bias parameter bb2. Di↵erences
are again observable at the level of trend parameters bg2 and \noise intensity based on monthly and
weekly data—results show lower bg2 and higher noise intensity compared to daily data and monthly
data perform the worst statistical fit compared to weekly and daily dataset. These findings are
once again likely to be an implied technical side-e↵ect of small MA window.

6. Conclusion

This paper proposes innovative computational framework for empirical estimation of FABMs. Mo-
tivated by the lack of general consensus on the estimation methodology, not many examples on
structural estimation of FABMs, and inconclusive results in recent FABM literature, we introduce
a general framework for estimation of full-fledged FABMs that significantly reduce the importance
of restrictive theoretical assumptions. Because for many FABMs no closed-form representation of
the likelihood function exists, we follow the Kristensen and Shin (2012) framework of a simulated
MLE based on nonparametric kernel methods. In situations when we cannot derive the usual MLE,
simulated MLE constitutes an opportune estimation method for general class of FABMs.

We customise the NPSMLE methodology of Kristensen and Shin (2012) and elaborate its
capability for FABMs estimation purposes. To start with, we apply the methodology to the pop-
ular and widely analysed model of Brock and Hommes (1998). We extensively test small sample
properties of the estimator via Monte Carlo simulations and confirm the ability of the NPSMLE
method to reveal true parameters with high precision. We further show that theoretical proper-
ties of the estimator, the consistency and asymptotic e�ciency, also hold in small samples for the
model. Next, we assess the impact of the stochastic noise intensity in the system and investigate
the robustness of the estimation method w.r.t. various modifications of the model as well as of
the estimation algorithm. Finally, using graphical computational tools we analyse behaviour of
simulated log-likelihood functions. Based on generally very smooth shape with a unique maxima
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we assume that the regularity conditions are met for the HAM and the identification of parameters
is assured.

We present the full sample static estimates to reveal robust average relationships in the 2-type
and the 3-type Brock and Hommes (1998) model using cross section of world stock markets as well
as rolling window approach to detect possible dynamics in the behaviour of market coe�cients over
time and eventual structural breaks. The crucial result of our analysis is the statistical insignificance
of the switching coe�cient b�. This is a common result in the existing literature, but on the
other hand we contrast another part of the HAM estimation literature reporting significant b�s for
various specific markets. In contrary, our estimation results of the 2-type model reveal markedly
statistically significant belief parameters defining heterogeneous trading regimes with an absolute
superiority of trend-following over contrarian strategies. Our findings further indicate robustness
w.r.t. the fundamental value specification and remain largely una↵ected under the robustness
burden of di↵erent than daily data frequency, jumps in market risk free rate, or introducing of
agents’ memory. Graphical inspection of simulated log-likelihood functions reveals a bit rough
surface, but very consistent performance of the estimation method over all random runs leading to
unique maxima. The adapted computational algorithm is, however, able to deal well with the not-
completely-smooth surface of the simulated log-likelihood function and the important identification
feature is thus verified also for the empirical application.

Both main results are also stable over the entire period confirmed via rolling estimation
approach which primarily supports the validity of the full sample static estimates. Interesting
signs of a specific behaviour are detectable for rolling estimation of individual indices on the level
of standard deviations. S&P500 data detects turbulent periods around the WTC 9/11 attack,
Lehman Bankruptcy, or downgrade of the U.S. ranking to AA+ in 2011 but also other tracked
world events. NASDAQ reflects mainly the Asian Crisis in 1997 and the Dot-com Bubble Burst
in 2000 which is, however, not observed for a more general S&P500. European indices DAX and
FTSE can detect the crisis around the Rubble devaluation in 1998 but not the Asian Crisis of 1997.
HSI conversely captures the e↵ect of 1997 Asian Crisis but not the 1998 Rubble devaluation. This
can be interpreted as a sign of increased presence of contrarians during such turbulent stock market
periods detected via less e�cient estimates of trend following coe�cients. Next, estimation of a
more-flexible 3-type model with the mix of fundamental, trend following, and contrarian strategy
further suggests redundancy of the contrarian strategy for the overall model fit.

Finally, we correct for possible model misspecification introducing fixed fraction of the fun-
damental strategy instead of switching coe�cient � which is estimated statistically insignificant.
The fraction is, however, the subject of empirical estimation and is found strongly statistically
significant for all analysed indices. A strong trend chasing strategy is then expressed via trend
coe�cient around 2 for all indices in the fraction model. The magnitude of the fundamentalists’
population closely around 56% represents overall proportional dominance of fundamentalists over
trend following chartists on world stock markets and even stable in time.
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Appendix 1: Supplementary tables

On the following pages, supplementary tables are provided.
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Table 9: Estimation methods of FABMs II. b)

Models # Data Type Fit |IOC|
Barunik and Vosvrda (2009) 8,17 d:1987–1988,2001–2002 s pseudo-R2 up to .8 -
Barunik and Kukacka (2015) 10 d:6739,409 o. s pseudo-R2=.8, .86 -
Bolt et al. (2011) 5 q:164 o. re NA 2716(i),12420(i)
Bolt et al. (2014) 4 q:178 o. re NA 795(i)–26333(i)
Cornea et al. (2013) 2 q:204 o. U.S. inflation R

2=.78, .94 4.78(s)
Chen and Lux (2015) 3 d:1/1980–12/2010 s/fx/g p-v 2 h4.6%, 45.5%i -
Chiarella et al. (2014) 6 m:502,251 o. s - .44(s),.54(s),.69(s)
Chiarella et al. (2015) 5 w:2007–4/2013 CDS spreads - .74(i)–6.84(s)
de Jong et al. (2009a) 10 q:112 o. s - 1.03(s),2.87(s)
ter Ellen and Zwinkels (2010) 7 m:295,319 c (crude oil) - 1.19(s),1.36(s)
ter Ellen et al. (2013) 2–5 w:1/2003–2/2008 fx adjR

2 up to .7 7.72(i)–454.4(i)
Franke (2009) 6 d:4115–6867 o. s,fx p-v 2 h0%, 2%i -
Frijns et al. (2010) 5 d:01–12/2000 s (index options) - 107.34(i)
Franke and Westerho↵ (2011) 6 d:6866,6861 o. s,fx p-v=12.8%, 27.7% -
Franke and Westerho↵ (2012) 9 d:6866 o. s p-v=12.7%–32.6% -
Ghonghadze and Lux (2015) 3 d:1/1980–12/2009 s/fx/g p-v 2 h.3%, 67%i -
Grazzini et al. (2013) 3 - - - -
Grazzini and Richiardi (2015) 1 d:400 o. s - -
Goldbaum and Zwinkels (2014) 4 m:2825–2941 o. fx (experts’ forecasts) adjR

2=.55–.79 -
Hommes and Veld (2015) 4 q:252 o. re R

2=.95 2.44(i)
Huisman et al. (2010) 4 d:694,753,1038 o. c (electricity futures) - 1.06(s),1.77(s),15.87(i)
Kouwenberg and Zwinkels (2014) 4 q:127,198 o. re - 2.98(s),1.36(s)
Kouwenberg and Zwinkels (2015) 5 q:204 o. re - 2.18(s)
Lof (2012) 7 q:208 o. s R

2=.97 7.45(s), 4.74(s)
Lof (0) 5 a:140 o. s R

2=.55 type-specific: .8(i),1.13(s),5.18(i)
Reitz and Slopek (2009) 6 m:252 o. c (crude oil) - -
Recchioni et al. (2015) 4 d:245 o. s - 2.14(s),.59(i),.03(s),.36(i)
Verschoor and Zwinkels (2013) 5 m:107 o. fx - 2.64(i),14.51(i)

Note: The Table complements information in Table 2 following the logic of Table 1. Authors are alphabetised. ‘#’ displays total number of estimated
parameters; ‘Data’ describes data frequency: ‘d/w/m/q/a’ for daily/weekly/monthly/quarterly/annual, and number of observations (when a specific figure
is not provided, we report starting and final years); ‘Type’ shows the type of data: ‘s/fx/c/g/re’ for stock markets/FX/commodity markets/gold/real
estate; ‘Fit’ reports the statistical fit of the estimation (R2, its alternatives, p-value of the J-test of overidentifying restrictions to accept the model as
a possible data generating process); and ‘|IOC|’ displays the absolute estimated value of the ‘intensity of choice’—the switching parameter from the
multinomial logit model, see Equation 16 (where relevant), furthermore ‘s’/‘i’ denotes its statistical significance/insignificance at 5% level. Figures are
rounded to 2 decimal digits.
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Table 10: Results for � estimation with normal noise

� (a) b�, N(0, 10�16) (b) b�, N(0, 10�14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 .00 .03 -.02 .04 41% -.00 -.00 .07 -.15 .11 2%
.1 .10 .10 .02 .08 .12 17% .10 .10 .05 -.03 .21 0%
.5 .50 .50 .05 .47 .54 54% .50 .50 .11 .40 .67 7%
1 1.00 .99 .08 .91 1.05 70% 1.00 1.00 .18 .84 1.15 22%
3 3.00 3.02 .17 2.88 3.38 86% 3.00 3.01 .35 2.77 3.35 43%
5 5.00 5.08 .90 4.88 5.20 89% 5.00 4.99 .29 4.74 5.16 59%

10 10.00 9.98 .07 9.78 10.10 95% 10.00 9.99 .29 9.57 10.54 72%

(c) b�, N(0, 10�12) (d) b�, N(0, 10�10)

0 .00 -.01 .17 -.46 .41 0% .00 .01 .24 -.49 .49 0%
.1 .10 .10 .11 -.10 .30 0% .09 .09 .13 -.10 .30 0%
.5 .50 .49 .26 -.19 1.15 0% .50 .49 .36 -.37 1.29 0%
1 1.00 .99 .33 .28 1.78 0% 1.00 1.00 .50 -.22 2.25 0%
3 3.00 3.01 .60 2.21 3.78 3% 3.01 3.02 1.07 .39 5.31 0%
5 5.00 4.97 .62 4.12 5.59 10% 5.01 4.97 1.39 2.51 6.83 2%

10 10.00 9.96 1.04 8.91 11.00 33% 10.01 9.80 2.10 5.93 11.29 20%

(e) b�, N(0, 10�8) (f) b�, N(0, 10�6)

0 -.00 -.00 .23 -.48 .48 0% -.00 -.01 .23 -.46 .46 0%
.1 .11 .11 .12 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .49 .33 -.30 1.21 0% .49 .47 .35 -.37 1.26 0%
1 1.01 1.04 .50 -.09 2.36 0% 1.01 1.04 .51 -.10 2.43 0%
3 3.01 3.03 .91 1.33 5.07 0% 2.99 3.00 .95 .93 5.03 0%
5 4.99 5.01 1.27 3.13 6.90 2% 5.00 4.98 1.19 2.52 6.52 2%

10 10.00 10.02 2.28 7.85 12.48 19% 9.99 9.94 2.00 6.83 11.61 19%

(g) b�, N(0, 0.012) (h) b�, N(0, 0.12)

0 .01 -.00 .23 -.49 .45 0% .01 .01 .22 -.45 .46 0%
.1 .09 .10 .12 -.10 .30 0% .11 .11 .12 -.10 .30 0%
.5 .50 .49 .34 -.32 1.26 0% .50 .50 .35 -.35 1.30 0%
1 .99 .99 .52 -.35 2.31 0% .99 1.00 .50 -.19 2.46 0%
3 3.01 3.00 .89 1.04 4.74 0% 2.99 3.05 1.00 1.48 5.86 0%
5 5.01 5.01 1.26 2.39 7.11 2% 4.99 5.05 1.21 3.75 6.81 1%

10 10.00 9.85 2.42 5.97 11.90 13% 9.99 9.99 2.22 7.57 11.64 3%

(i) b�, N(0, 1) (j) b�, N(0, 22)

0 .00 .00 .11 -.24 .23 0% -.00 -.00 .05 -.08 .08 0%
.1 .11 .11 .08 -.09 .30 0% .10 .10 .04 .01 .20 0%
.5 .50 .51 .14 .23 .81 0% .50 .51 .11 .33 .72 2%
1 1.00 1.01 .23 .66 1.45 1% 1.01 1.05 .27 .71 1.76 4%
3 3.07 3.59 1.41 2.35 7.93 3% 3.34 4.01 1.69 2.14 8.49 35%
5 5.61 7.23 3.30 3.82 14.41 8% 4.96 5.01 1.64 2.57 8.44 64%

10 11.20 13.43 6.31 5.16 28.13 23% 7.77 5.63 5.87 -9.53 10.64 96%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 11: Results for � estimation with normal noise, R = 1.001

� (a) b�, N(0, 10�16) (b) b�, N(0, 10�14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .04 -.00 .01 83% -.00 -.00 .02 -.03 .02 39%
.1 .10 .10 .01 .10 .11 72% .10 .10 .02 .08 .12 17%
.5 .50 .50 .01 .49 .52 90% .50 .50 .05 .47 .55 56%
1 1.00 1.01 .10 .97 1.03 93% 1.00 1.00 .10 .95 1.11 69%
3 3.00 3.00 .03 2.94 3.15 96% 3.00 3.00 .03 2.94 3.07 86%
5 5.00 5.03 .23 4.49 5.84 98% 5.00 5.05 .44 4.86 5.28 90%

10 10.00 10.01 .01 10.00 10.04 99% 10.00 9.65 2.50 9.07 10.08 94%

(c) b�, N(0, 10�12) (d) b�, N(0, 10�10)

0 .00 .00 .08 -.12 .16 2% .00 .00 .18 -.46 .44 0%
.1 .10 .10 .05 -.07 .24 0% .10 .10 .10 -.10 .30 0%
.5 .50 .50 .11 .34 .66 7% .50 .49 .24 -.13 1.01 0%
1 1.00 .99 .15 .85 1.17 19% 1.00 1.00 .28 .49 1.58 0%
3 3.00 2.99 .29 2.77 3.21 43% 3.00 2.98 .41 2.18 3.60 3%
5 5.00 5.01 .21 4.74 5.38 59% 5.00 4.98 .84 4.19 5.76 10%

10 10.00 9.97 .47 9.60 10.24 73% 10.00 9.96 .94 9.08 10.88 30%

(e) b�, N(0, 10�8) (f) b�, N(0, 10�6)

0 -.00 -.00 .25 -.50 .50 0% .00 .00 .23 -.46 .48 0%
.1 .09 .09 .13 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .34 -.25 1.32 0% .50 .51 .34 -.29 1.35 0%
1 .98 .97 .52 -.32 2.18 0% 1.02 1.03 .52 -.37 2.41 0%
3 3.00 2.97 .87 .79 4.40 0% 3.00 2.98 1.01 .44 4.86 0%
5 5.00 4.97 1.22 3.10 6.74 3% 4.99 4.96 1.56 1.59 7.41 3%

10 9.99 9.95 1.55 7.98 11.45 19% 9.99 10.04 2.04 8.29 11.97 17%

(g) b�, N(0, 0.012) (h) b�, N(0, 0.12)

0 -.00 -.00 .23 -.47 .45 0% -.01 -.01 .22 -.47 .43 0%
.1 .10 .10 .12 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .35 -.30 1.30 0% .50 .50 .36 -.32 1.35 0%
1 1.00 .99 .55 -.43 2.40 0% 1.01 1.02 .52 -.28 2.38 0%
3 3.01 3.04 1.02 .87 5.48 0% 3.00 3.00 .90 1.16 4.85 0%
5 5.00 4.98 1.51 2.77 7.55 3% 4.99 4.98 1.41 2.90 7.09 0%

10 10.01 9.87 2.31 4.97 11.58 16% 10.01 10.07 1.83 8.82 12.20 1%

(i) b�, N(0, 1) (j) b�, N(0, 22)

0 .00 .00 .10 -.23 .22 0% .00 .00 .05 -.08 .10 0%
.1 .10 .10 .09 -.10 .30 0% .10 .10 .04 -.00 .18 0%
.5 .50 .50 .14 .24 .80 0% .50 .51 .10 .36 .73 2%
1 1.00 1.02 .20 .66 1.43 1% 1.01 1.06 .31 .71 2.03 4%
3 3.08 3.58 1.38 2.36 7.79 4% 3.40 3.93 1.57 2.11 8.36 34%
5 5.54 7.21 3.25 3.77 14.39 6% 5.03 5.25 1.67 2.80 9.13 63%

10 10.87 12.84 6.09 4.87 27.55 25% 6.14 3.97 6.82 -9.84 11.22 97%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from normal distributions of given parameters, R = 1.001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000. and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 12: Results for � estimation with normal noise, o↵-centered

� (a) b�, N(0, 10�16) (b) b�, N(0, 10�14)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 -.00 .03 -.02 .02 40% -.00 .00 .07 -.12 .12 2%
.1 .10 .10 .02 .09 .11 18% .10 .10 .05 -.04 .21 0%
.5 .50 .50 .09 .46 .54 57% .50 .51 .12 .36 .69 9%
1 1.00 1.00 .04 .95 1.04 72% 1.00 .99 .13 .80 1.13 22%
3 3.00 3.00 .31 2.89 3.07 85% 3.00 2.99 .31 2.78 3.25 45%
5 5.00 5.00 .06 4.88 5.19 90% 5.00 5.00 .60 4.56 5.30 59%

10 10.00 10.07 .49 9.93 10.17 94% 10.00 10.01 .26 9.44 10.57 74%

(c) b�, N(0, 10�12) (d) b�, N(0, 10�10)

0 -.00 .01 .17 -.38 .52 0% .03 .05 .25 -.38 .60 0%
.1 .10 .11 .10 -.05 .35 0% .13 .13 .13 -.05 .35 0%
.5 .50 .52 .26 -.02 1.34 0% .50 .53 .36 -.20 1.49 0%
1 1.00 1.01 .31 .37 1.79 0% 1.00 1.05 .55 -.08 2.69 0%
3 3.00 3.01 .58 2.26 3.85 4% 3.00 3.05 1.00 1.25 5.50 0%
5 5.00 5.02 .87 4.13 5.81 12% 5.00 5.08 1.39 3.08 9.45 2%

10 10.00 10.09 1.53 9.01 11.66 34% 10.00 10.16 2.47 7.95 13.38 20

(e) b�, N(0, 10�8) (f) b�, N(0, 10�6)

0 .00 .01 .23 -.38 .54 0% .03 .06 .24 -.37 .59 0%
.1 .11 .12 .12 -.05 .35 0% .12 .13 .12 -.05 .35 0%
.5 .50 .53 .34 -.15 1.47 0% .51 .56 .36 -.14 1.55 0%
1 1.01 1.03 .49 -.02 2.34 0% 1.01 1.07 .51 .03 2.52 0%
3 3.01 3.07 .97 1.21 5.96 0% 3.00 3.08 1.01 1.14 5.88 0%
5 5.00 5.05 1.37 2.68 7.51 3% 4.99 5.08 1.28 3.51 7.24 2%

10 10.01 10.18 2.38 7.95 14.78 20% 10.00 10.24 2.60 8.40 13.99 20%

(g) b�, N(0, 0.012) (h) b�, N(0, 0.12)

0 .02 .03 .22 -.38 .52 0% .01 .03 .23 -.36 .56 0%
.1 .11 .13 .12 -.05 .35 0% .12 .13 .12 -.05 .35 0%
.5 .51 .55 .35 -.13 1.50 0% .50 .54 .35 -.15 1.54 0%
1 .99 1.05 .53 -.05 2.60 0% 1.01 1.07 .55 -.06 2.81 0%
3 3.00 3.13 1.08 1.75 6.87 0% 3.00 3.07 1.05 1.20 5.77 0%
5 5.00 5.12 1.55 2.96 8.68 3% 5.01 5.19 1.58 3.89 9.97 0%

10 9.99 9.93 2.46 5.26 12.04 17% 10.00 10.09 1.75 8.70 11.34 1%

(i) b�, N(0, 1) (j) b�, N(0, 22)

0 .00 .00 .10 -.21 .20 0% .00 .00 .05 -.08 .10 0%
.1 .10 .11 .08 -.05 .32 0% .10 .10 .04 .02 .20 0%
.5 .50 .51 .15 .23 .89 0% .50 .51 .10 .34 .71 2%
1 1.01 1.03 .25 .73 1.41 0% 1.01 1.09 .40 .71 2.70 5%
3 3.17 4.17 2.08 2.39 9.67 3% 3.54 4.26 1.89 2.07 9.01 40%
5 6.39 8.36 4.08 4.03 16.81 10% 5.01 5.28 1.70 2.87 9.55 67%

10 11.82 14.99 7.33 6.69 32.74 33% 6.30 6.46 3.08 -4.79 11.83 97%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from normal distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 13: Results for � estimation with uniform noise I. . .

. . . covering equal intervals as their respective normal counterparts by 99.74% of the probability mass

� (a) b�, U(�3⇥ 10�8, 3⇥ 10�8) (b) b�, U(�3⇥ 10�7, 3⇥ 10�7)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 -.00 -.00 .04 -.03 .03 26% .00 .00 .07 -.12 .13 0%
.1 .10 .10 .02 .09 .12 10% .10 .10 .05 -.01 .24 0%
.5 .50 .50 .04 .47 .53 42% .50 .50 .11 .30 .73 2%
1 1.00 1.00 .09 .94 1.04 56% 1.00 1.00 .10 .86 1.12 9%
3 3.00 3.01 .11 2.96 3.14 80% 3.00 3.01 .16 2.81 3.15 31%
5 5.00 5.00 .05 4.91 5.12 85% 5.00 5.00 .39 4.85 5.22 44%

10 10.00 10.02 .20 9.88 10.07 92% 10.00 10.02 .35 9.79 10.41 62%

(c) b�, U(�3⇥ 10�6, 3⇥ 10�6) (d) b�, U(�3⇥ 10�5, 3⇥ 10�5)

0 -.00 -.01 .15 -.41 .34 0% -.00 -.01 .20 -.45 .45 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .50 .21 .02 .98 0% .49 .48 .27 -.21 1.14 0%
1 1.00 1.01 .28 .49 1.59 0% 1.01 1.00 .38 -.08 1.92 0%
3 3.00 3.02 .50 2.57 3.74 1% 2.99 2.98 .79 1.76 4.19 0%
5 5.00 5.03 .60 4.44 5.69 5% 5.00 4.96 .86 4.02 5.64 2%

10 10.00 10.02 .71 9.50 10.91 28% 10.00 10.05 1.25 9.31 10.79 22%

(e) b�, U(�3⇥ 10�4, 3⇥ 10�4) (f) b�, U(�3⇥ 10�3, 3⇥ 10�3)

0 .00 -.00 .17 -.39 .39 0% .00 .00 .17 -.39 .41 0%
.1 .10 .10 .10 -.09 .28 0% .10 .10 .09 -.09 .29 0%
.5 .50 .49 .26 -.20 1.16 0% .50 .49 .29 -.33 1.16 0%
1 1.00 1.00 .40 -.06 2.03 0% 1.01 1.03 .35 .29 1.96 0%
3 2.99 3.00 .73 2.13 3.69 0% 3.00 3.02 .80 2.01 4.38 0%
5 5.00 4.95 1.07 3.23 6.01 2% 4.99 5.00 1.11 4.14 5.84 2%

10 10.00 10.02 1.55 9.38 11.20 19% 10.00 9.91 1.72 8.76 10.67 17%

(g) b�, U(�0.03, 0.03) (h) b�, U(�0.3, 0.3)

0 -.00 -.01 .17 -.41 .37 0% .00 -.00 .16 -.40 .35 0%
.1 .10 .10 .10 -.08 .29 0% .10 .10 .09 -.09 .29 0%
.5 .50 .50 .26 -.21 1.11 0% .50 .51 .25 -.15 1.14 0%
1 1.00 .99 .40 -.21 1.88 0% 1.00 .99 .40 -.08 2.17 0%
3 3.00 3.03 .72 1.97 4.56 0% 2.99 3.00 .64 2.28 3.73 0%
5 5.00 5.02 1.13 3.85 6.25 2% 5.00 5.03 .89 4.44 5.81 0%

10 10.00 10.04 1.65 9.34 10.64 12% 10.01 10.10 1.18 9.40 10.89 1%

(i) b�, U(�3, 3) (j) b�, U(�6, 6)

0 -.00 .00 .04 -.06 .06 0% -.00 .00 .01 -.02 .02 0%
.1 .10 .10 .03 .03 .16 0% .10 .10 .01 .08 .13 0%
.5 .50 .50 .05 .42 .59 1% .50 .50 .06 .43 .61 7%
1 1.00 1.01 .15 .86 1.20 3% 1.01 1.06 .27 .81 1.99 20%
3 3.09 3.95 1.77 2.56 8.49 11% 3.14 3.40 .99 2.03 5.90 67%
5 5.56 7.28 3.17 3.95 14.41 26% 4.24 4.05 2.02 -3.68 7.20 88%

10 10.26 11.46 4.78 5.44 24.34 56% - - - - - 100%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from uniform distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 14: Results for � estimation with uniform noise II. . .

. . . with equal variances as their respective normal counterparts

� (a) b�, U(�
p
12

2

⇥ 10�8,
p
12

2

⇥ 10�8) (b) b�, U(�
p
12

2

⇥ 10�7,
p
12

2

⇥ 10�7)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .02 -.01 .01 39% -.00 -.00 .05 -.09 .10 1%
.1 .10 .10 .01 .09 .11 18% .10 .10 .03 .04 .18 0%
.5 .50 .50 .02 .48 .53 57% .50 .50 .08 .43 .59 6%
1 1.00 1.00 .04 .97 1.04 68% 1.00 1.00 .10 .92 1.11 20%
3 3.00 2.93 .54 2.93 3.06 87% 3.00 3.00 .15 2.84 3.12 45%
5 5.00 5.01 .07 4.95 5.11 88% 5.00 4.99 .18 4.72 5.18 55%

10 10.00 10.00 .05 9.89 10.18 94% 10.00 10.01 .17 9.85 10.29 72%

(c) b�, U(�
p
12

2

⇥ 10�6,
p
12

2

⇥ 10�6) (d) b�, U(�
p
12

2

⇥ 10�5,
p
12

2

⇥ 10�5)

0 -.00 .00 .13 -.29 .39 0% -.00 -.00 .20 -.48 .44 0%
.1 .10 .10 .09 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .49 .19 .00 .89 0% .50 .51 .27 -.16 1.25 0%
1 1.00 1.00 .25 .45 1.43 0% 1.00 .98 .41 -.12 2.01 0%
3 3.00 3.00 .35 2.62 3.42 3% 3.00 3.01 .74 2.15 4.04 0%
5 5.00 4.97 .54 4.44 5.41 12% 5.01 5.00 .86 3.84 5.84 2%

10 10.00 10.01 1.04 9.49 10.46 32% 10.00 10.02 1.38 9.23 10.90 21%

(e) b�, U(�
p
12

2

⇥ 10�4,
p
12

2

⇥ 10�4) (f) b�, U(�
p

12

2

⇥ 10�3,
p
12

2

⇥ 10�3)

0 .00 .00 .18 -.40 .42 0% .00 .00 .17 -.39 .42 0%
.1 .10 .10 .10 -.09 .29 0% .10 .10 .09 -.09 .29 0%
.5 .50 .50 .28 -.25 1.22 0% .50 .50 .27 -.23 1.25 0%
1 1.00 1.02 .44 -.03 2.36 0% 1.00 1.00 .39 -.06 2.08 0%
3 3.00 3.00 .80 1.48 4.29 0% 3.00 2.99 .74 2.01 3.85 0%
5 5.00 4.95 1.03 3.79 5.72 3% 5.00 5.03 .87 4.25 6.43 2%

10 10.01 9.93 1.79 9.41 10.74 19% 10.00 9.97 1.76 9.11 10.69 19%

(g) b�, U(�
p
12

2

⇥ 10�2,
p
12

2

⇥ 10�2) (h) b�, U(�
p
12

2

⇥ 10�1,
p
12

2

⇥ 10�1)

0 .00 .00 .17 -.40 .39 0% -.00 -.00 .17 -.40 .39 0%
.1 .10 .10 .09 -.08 .29 0% .10 .10 .10 -.09 .29 0%
.5 .50 .52 .27 -.15 1.21 0% .50 .49 .27 -.21 1.19 0%
1 1.00 .99 .45 -.23 2.21 0% 1.00 .99 .36 .13 1.91 0%
3 3.00 3.01 .72 2.15 4.44 0% 3.01 3.02 .80 1.71 4.55 0%
5 5.00 4.98 .90 4.08 5.87 3% 5.00 5.05 .97 4.51 5.81 1%

10 9.99 9.99 1.34 9.27 10.74 14% 10.01 10.02 1.51 9.44 10.71 2%

(i) b�, U(�
p
12

2

,
p
12

2

) (j) b�, U(�2
p
12

2

, 2
p
12

2

)

0 .00 .00 .06 -.11 .15 0% .00 .00 .02 -.04 .04 0%
.1 .10 .10 .06 -.02 .25 0% .10 .10 .03 .06 .16 0%
.5 .50 .50 .09 .34 .64 0% .50 .50 .06 .42 .59 2%
1 1.00 1.00 .08 .82 1.16 1% 1.00 1.01 .11 .87 1.18 3%
3 3.02 3.18 .82 2.64 6.53 3% 3.16 4.25 1.96 2.54 8.67 18%
5 5.13 6.62 2.89 4.34 13.75 6% 5.49 6.81 2.86 3.49 13.82 38%

10 11.05 14.78 6.59 8.05 29.42 17% 9.46 9.02 4.31 -5.54 17.48 68%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from uniform distributions of given parameters, R = 1.0001.
Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’
column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 15: Results for � estimation w.r.t. various dist. of gh & bh I.

� (a) b�, gh & bh ⇠ N(0, 0.12) (b) b�, gh & bh ⇠ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .02 .01 .29 -.47 .48 0% -.02 -.01 .28 -.48 .48 0%
.1 .10 .10 .12 -.09 .29 0% .10 .10 .12 -.10 .30 0%
.5 .50 .51 .57 -.42 1.44 0% .51 .51 .48 -.40 1.39 0%
1 .87 .94 1.15 -.95 2.91 0% .99 .99 .80 -.73 2.73 0%
3 2.95 2.95 3.25 -2.67 8.69 0% 3.00 2.97 1.81 -1.65 7.43 0%
5 4.99 5.07 5.04 -4.26 14.17 0% 4.97 4.77 2.60 -3.23 10.94 0%

10 10.02 10.15 9.03 -8.22 27.82 0% 9.98 9.92 3.65 .31 18.84 0%

(c) b�, gh & bh ⇠ N(0, 0.32) (d) b�, gh & bh ⇠ N(0, 0.42)

0 .00 .00 .23 -.47 .47 0% -.01 -.00 .17 -.38 .43 0%
.1 .10 .10 .12 -.10 .30 0% .10 .10 .11 -.10 .30 0%
.5 .50 .50 .34 -.34 1.27 0% .50 .50 .24 -.09 1.17 0%
1 1.01 1.01 .54 -.40 2.33 0% 1.00 1.00 .37 .20 1.85 0%
3 3.00 3.01 .83 1.57 4.93 0% 2.99 2.95 .78 1.24 3.76 0%
5 5.00 5.00 1.35 3.02 6.84 0% 5.00 5.00 .85 4.17 5.65 1%

10 9.99 10.01 1.87 8.19 11.55 1% 10.00 10.02 1.33 9.11 10.77 6%

(e) b�, gh & bh ⇠ N(0, 0.62) (f) b�, gh & bh ⇠ N(0, 0.82)

0 .00 -.00 .11 -.34 .25 0% .00 .00 .07 -.14 .16 0%
.1 .10 .10 .08 -.09 .29 0% .10 .10 .05 -.00 .25 1%
.5 .50 .50 .13 .28 .75 0% .50 .50 .08 .39 .62 2%
1 1.00 1.00 .15 .71 1.27 0% 1.00 1.00 .11 .84 1.16 6%
3 3.00 3.00 .19 2.72 3.29 7% 3.00 3.01 .27 2.84 3.18 29%
5 5.00 4.99 .31 4.62 5.26 16% 5.00 5.01 .29 4.80 5.27 42%

10 10.01 10.04 .88 9.55 10.36 28% 10.00 10.04 1.05 9.47 10.28 54%

(g) b�, gh & bh ⇠ N(0, 1) (h) b�, gh & bh ⇠ N(0, 1.22)

0 .00 .00 .05 -.06 .10 2% .00 .00 .03 -.05 .06 7%
.1 .10 .10 .04 .02 .18 2% .10 .10 .03 .05 .15 4%
.5 .50 .50 .07 .39 .58 9% .50 .50 .04 .43 .56 20%
1 1.00 1.00 .09 .91 1.13 20% 1.00 1.00 .05 .94 1.09 40%
3 3.00 3.00 .07 2.84 3.13 52% 3.00 2.99 .14 2.85 3.09 69%
5 5.00 5.01 .26 4.87 5.20 64% 5.00 5.04 .67 4.59 5.18 75%

10 10.00 10.21 1.78 9.59 11.98 73% 10.01 10.42 2.59 9.72 21.17 83%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise ✏t and {"i}Ni=1

drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 16: Results for � estimation w.r.t. various dist. of gh & bh II.

� (a) b�, gh & bh ⇠ N(0, 0.12) (b) b�, gh & bh ⇠ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .02 .01 .29 -.47 .48 0% -.00 -.00 .24 -.47 .49 0%
.1 .10 .10 .12 -.09 .29 0% .10 .10 .13 -.10 .30 0%
.5 .51 .52 .57 -.44 1.46 0% .51 .53 .37 -.34 1.33 0%
1 1.02 1.05 1.11 -.85 2.92 0% 1.02 1.08 .58 -.12 2.64 0%
3 3.62 3.55 3.22 -2.50 8.75 0% 3.49 4.28 2.17 .83 8.59 0%
5 6.74 6.39 5.62 -4.34 14.58 0% 6.59 7.86 3.89 2.14 14.57 0%

10 12.73 12.32 11.46 -8.31 29.60 1% 12.51 13.98 8.89 -5.54 29.58 2%

(c) b�, gh & bh ⇠ N(0, 0.32) (d) b�, gh & bh ⇠ N(0, 0.42)

0 .00 .00 .16 -.39 .34 0% -.00 -.00 .09 -.21 .19 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .07 -.06 .26 0%
.5 .51 .52 .19 .17 .97 0% .50 .50 .11 .31 .73 0%
1 1.00 1.02 .30 .60 1.70 0% 1.00 1.01 .19 .75 1.32 1%
3 3.17 3.78 1.57 2.33 8.23 0% 3.05 3.43 1.25 2.48 7.72 4%
5 5.82 7.43 3.42 3.71 14.46 1% 5.35 6.92 3.15 3.89 14.39 8%

10 11.49 13.91 6.99 -.28 28.97 9% 11.16 13.21 5.83 6.10 28.03 25%

(e) b�, gh & bh ⇠ N(0, 0.62) (f) b�, gh & bh ⇠ N(0, 0.82)

0 -.00 -.00 .04 -.08 .08 0% .00 -.00 .02 -.05 .04 0%
.1 .10 .10 .04 .02 .20 0% .10 .10 .02 .05 .14 7%
.5 .50 .50 .06 .39 .63 12% .50 .50 .04 .42 .59 30%
1 1.00 1.00 .09 .83 1.23 16% 1.00 1.00 .07 .87 1.15 41%
3 3.02 3.17 .78 2.56 6.19 26% 3.02 3.08 .53 2.57 3.64 62%
5 5.29 6.67 2.84 4.20 13.73 42% 5.10 6.14 2.51 4.16 13.49 64%

10 10.52 12.26 4.88 6.59 25.70 62% 10.29 11.94 4.29 7.88 24.38 84%

(g) b�, gh & bh ⇠ N(0, 1) (h) b�, gh & bh ⇠ N(0, 1.22)

0 -.00 .00 .01 -.03 .03 3% .00 .00 .01 -.02 .02 9%
.1 .10 .10 .01 .07 .13 20% .10 .10 .01 .08 .13 38%
.5 .50 .50 .03 .45 .58 55% .50 .50 .02 .45 .54 68%
1 1.00 1.00 .06 .89 1.10 64% 1.00 1.00 .04 .91 1.09 77%
3 2.99 3.00 .30 2.61 3.34 75% 2.98 3.01 .31 2.65 3.41 87%
5 5.14 6.19 2.56 4.24 13.26 82% 5.04 6.17 2.69 4.36 13.96 93%

10 10.26 11.42 3.19 8.08 20.32 92% 9.85 10.75 2.88 8.47 19.13 96%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise ✏t and {"i}Ni=1

drawn from normal distribution N(0, 1), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.

61



Table 17: Results for � estim. w.r.t. various dist. of gh and bh III.

� (a) b�, gh & bh ⇠ N(0, 0.12) (b) b�, gh & bh ⇠ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 .00 .27 -.50 .50 0% .00 .00 .13 -.36 .39 0%
.1 .10 .10 .13 -.10 .30 0% .10 .10 .08 -.10 .30 0%
.5 .50 .49 .42 -.50 1.46 0% .50 .50 .17 .13 .83 0%
1 .99 .98 .63 -.62 2.70 0% 1.00 1.00 .24 .58 1.37 3%
3 3.02 3.08 1.24 -.20 6.18 0% 3.00 3.03 .38 2.65 3.59 15%
5 4.99 4.89 1.67 .58 8.08 1% 5.00 4.96 .88 4.27 5.51 28%

10 10.00 9.96 2.85 3.87 14.45 4% 10.00 9.89 1.26 8.84 10.74 46%

(c) b�, gh & bh ⇠ N(0, 0.32) (d) b�, gh & bh ⇠ N(0, 0.42)

0 -.00 -.00 .07 -.15 .11 1% .00 .00 .04 -.06 .06 10%
.1 .10 .10 .05 -.05 .23 0% .10 .10 .03 .04 .17 2%
.5 .50 .50 .11 .35 .68 7% .50 .50 .06 .43 .57 24%
1 1.00 .99 .17 .77 1.19 18% 1.00 1.00 .13 .84 1.08 40%
3 3.00 3.00 .12 2.79 3.18 46% 3.00 2.99 .33 2.79 3.21 64%
5 5.00 5.03 .39 4.77 5.32 56% 5.00 5.01 .13 4.82 5.20 74%

10 10.00 9.94 1.21 9.63 10.29 74% 10.00 10.00 .29 9.42 10.31 85%

(e) b�, gh & bh ⇠ N(0, 0.62) (f) b�, gh & bh ⇠ N(0, 0.82)

0 -.00 -.00 .02 -.02 .02 36% -.00 -.00 .02 -.03 .02 54%
.1 .10 .10 .01 .08 .12 15% .10 .10 .01 .08 .11 35%
.5 .50 .50 .05 .46 .55 51% .50 .50 .02 .47 .52 68%
1 1.00 1.00 .05 .92 1.07 67% 1.00 1.00 .01 .98 1.02 83%
3 3.00 3.01 .09 2.93 3.09 86% 3.00 3.02 .18 2.94 3.09 94%
5 5.00 5.05 .32 4.90 5.42 91% 5.00 5.00 .03 4.92 5.07 97%

10 10.00 9.97 .60 9.76 10.38 96% 9.99 10.28 4.14 .80 25.02 98%

(g) b�, gh & bh ⇠ N(0, 1) (h) b�, gh & bh ⇠ N(0, 1.22)

0 -.00 -.00 .01 -.02 .01 72% .00 .00 .03 -.01 .01 79%
.1 .10 .10 .01 .09 .11 53% .10 .10 .00 .10 .10 67%
.5 .50 .50 .01 .48 .51 78% .50 .50 .02 .47 .51 88%
1 1.00 1.00 .03 .97 1.02 89% 1.00 1.00 .02 .98 1.11 94%
3 3.00 3.30 1.16 2.96 8.29 97% 3.00 3.16 .49 2.98 4.82 98%
5 5.00 5.00 .05 4.91 5.15 99% 5.00 5.59 1.68 4.93 9.76 99%

10 10.02 11.61 4.69 5.79 20.28 99% 10.01 14.29 7.09 9.62 29.62 99%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise ✏t and {"i}Ni=1

drawn from normal distribution N(0, 10�14), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 18: Results for � estim. w.r.t. various dist. of gh and bh IV.

� (a) b�, gh & bh ⇠ N(0, 0.12) (b) b�, gh & bh ⇠ N(0, 0.22)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .01 .00 .32 -.50 .50 0% .01 .01 .26 -.50 .50 0%
.1 .10 .10 .13 -.10 .30 0% .09 .09 .14 -.10 .30 0%
.5 .49 .50 .60 -.50 1.50 0% .50 .49 .39 -.43 1.39 0%
1 .99 .98 1.06 -.96 2.93 0% .99 1.01 .61 -.31 2.56 0%
3 3.03 3.05 2.59 -2.46 8.24 0% 3.00 3.06 1.11 .73 5.72 0%
5 5.06 5.20 3.77 -3.64 13.56 0% 5.00 4.90 1.73 -.77 7.65 0%

10 9.94 9.59 6.60 -7.20 25.75 0% 10.00 9.89 2.03 6.75 11.93 4%

(c) b�, gh & bh ⇠ N(0, 0.32) (d) b�, gh & bh ⇠ N(0, 0.42)

0 -.00 -.00 .18 -.49 .46 0% -.00 -.00 .12 -.34 .25 0%
.1 .10 .10 .11 -.10 .30 0% .10 .10 .08 -.10 .30 0%
.5 .50 .51 .25 -.14 1.15 0% .50 .50 .14 .19 .76 0%
1 1.00 1.00 .35 .27 1.74 0% 1.00 .99 .23 .58 1.35 3%
3 3.00 3.01 .51 2.43 3.73 4% 3.00 3.00 .47 2.53 3.45 15%
5 5.00 5.04 .59 4.34 5.83 10% 5.00 5.00 .31 4.51 5.44 29%

10 10.01 9.98 1.27 9.23 11.22 29% 10.01 9.99 .48 9.31 10.59 60%

(e) b�, gh & bh ⇠ N(0, 0.62) (f) b�, gh & bh ⇠ N(0, 0.82)

0 -.00 -.00 .07 -.11 .11 2% -.00 .00 .05 -.06 .08 11%
.1 .10 .10 .05 -.01 .22 0% .10 .10 .03 .05 .14 3%
.5 .50 .50 .08 .40 .61 7% .50 .50 .04 .43 .58 23%
1 1.00 1.00 .09 .86 1.15 18% 1.00 1.00 .04 .94 1.06 41%
3 3.00 3.00 .10 2.83 3.19 51% 3.00 3.00 .09 2.75 3.16 75%
5 5.00 5.00 .19 4.71 5.33 66% 5.00 5.01 .06 4.89 5.14 87%

10 10.00 10.12 .94 9.56 10.71 86% 10.00 9.95 .34 9.38 10.45 95%

(g) b�, gh & bh ⇠ N(0, 1) (h) b�, gh & bh ⇠ N(0, 1.22)

0 -.00 -.00 .04 -.03 .04 27% -.00 -.00 .02 -.02 .02 42%
.1 .10 .10 .02 .07 .13 12% .10 .10 .02 .08 .12 25%
.5 .50 .50 .04 .46 .55 43% .50 .50 .02 .47 .53 58%
1 1.00 1.00 .04 .94 1.04 62% 1.00 1.00 .05 .93 1.07 73%
3 3.00 3.00 .12 2.89 3.11 86% 3.00 3.00 .05 2.87 3.13 94%
5 5.00 5.25 1.16 4.85 10.13 94% 5.00 5.59 2.29 4.72 14.47 97%

10 10.00 10.76 3.36 5.79 22.97 97% 10.01 14.99 8.23 9.65 30.00 98%

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter, stochastic
noise ✏t and {"i}Ni=1

drawn from normal distribution N(0, 10�12), R = 1.0001. Each sample is based on
1000 random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel
estimation precision N = 1000. Sample medians, means, standard deviations (SD), 2.5% (LQ), and
97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the
percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 19: Results for � estimation with various combined noises II.

� (a) b�, ✏t ⇠ N(0, 1), (b) b�, ✏t ⇠ U(�
p
12

2

,
p
12

2

),

{"i}Ni=1

⇠ U(�
p
12

2

,
p

12

2

) {"i}Ni=1

⇠ N(0, 1)

Med. Mean SD LQ HQ NN Med. Mean SD LQ HQ NN

0 .00 -.01 .14 -.38 .29 0% .00 .01 .12 -.25 .24 0%
.1 .10 .10 .10 -.10 .30 0% .10 .10 .10 -.10 .30 0%
.5 .50 .51 .16 .19 .89 0% .50 .51 .14 .22 .82 0%
1 .99 1.00 .25 .54 1.56 1% 1.00 1.01 .23 .63 1.48 1%
3 3.05 3.22 .95 2.14 6.41 5% 3.07 3.56 1.44 2.25 7.97 3%
5 5.41 6.68 2.97 3.44 14.03 9% 5.55 7.27 3.28 3.79 14.34 6%

10 11.95 13.88 5.88 6.94 27.99 24% 11.39 14.03 6.84 5.51 29.30 13%

(c) b�, ✏t ⇠ N(0, 0.12), (d) b�, ✏t ⇠ U(�
p
12

2

⇥ 10�1,
p
12

2

⇥ 10�1),

{"i}Ni=1

⇠ U(�
p
12

2

⇥ 10�1,
p

12

2

⇥ 10�1) {"i}Ni=1

⇠ N(0, 0.12)

0 .02 .01 .27 -.50 .50 0% -.00 -.00 .22 -.47 .46 0%
.1 .10 .10 .14 -.10 .30 0% .10 .10 .12 -.10 .30 0%
.5 .50 .50 .40 -.43 1.44 0% .50 .50 .33 -.27 1.27 0%
1 1.01 1.01 .53 -.21 2.39 0% 1.00 1.03 .52 -.31 2.45 0%
3 3.02 3.03 .86 1.46 4.70 0% 3.00 3.03 1.06 .64 6.23 0%
5 5.01 5.01 1.18 3.05 6.76 0% 5.00 5.00 1.26 3.32 6.79 0%

10 10.00 10.01 1.43 8.13 11.88 2% 10.00 10.08 1.67 8.83 11.70 1%

(e) b�, ✏t ⇠ N(0, 0.12), (f) b�, ✏t ⇠ U(�
p
12

2

⇥ 10�1,
p
12

2

⇥ 10�1),

{"i}Ni=1

⇠ U(�
p
12

2

,
p

12

2

) {"i}Ni=1

⇠ N(0, 1)

0 .01 .01 .28 -.47 .47 0% -.00 -.00 .29 -.48 .48 0%
.1 .09 .09 .12 -.09 .29 0% .10 .09 .12 -.09 .29 0%
.5 .46 .49 .58 -.46 1.43 0% .46 .48 .58 -.46 1.45 0%
1 .95 .98 1.18 -.94 2.88 0% 1.06 1.04 1.12 -.89 2.90 0%
3 3.28 3.07 3.42 -2.75 8.68 0% 3.07 3.06 3.34 -2.73 8.81 0%
5 4.98 5.11 5.73 -4.77 14.78 0% 5.02 5.20 5.28 -4.13 14.36 0%

10 12.01 10.84 11.87 -10.00 29.41 1% 12.23 12.13 10.62 -8.21 29.17 1%

(g) b�, ✏t ⇠ N(0, 1), (h) b�, ✏t ⇠ U(�
p
12

2

,
p
12

2

),

{"i}Ni=1

⇠ U(�
p
12

2

⇥ 10�1,
p

12

2

⇥ 10�1) {"i}Ni=1

⇠ N(0, 0.12)

100% 100%

Note: Stochastic noise ✏t and {"i}Ni=1

drawn from di↵erent distributions with various variance, R =
1.0001. Each sample is based on 1000 random runs, H = 5 possible trading strategies, number of
observations t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard
deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal
digits. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 20: Results of 3-parameter estimation of a 2-type model I.

True (a)

b� (b) cg2 (c)

cb2 (d) LL

�, g2, b2 Md Mn SD Mn SD Mn SD L-rat 2�LL p-v NN

.0, .2, .15 -.01 -.00 .29 .20 .03 .15 .01 1 0 1 0%

.5, .2, .15 .49 .50 .57 .20 .03 .15 .01 1 0 1 0%

3, .2, .15 3.01 2.99 3.44 .20 .05 .15 .01 1 0 1 0%

10, .2, .15 11.60 12.19 9.46 .19 .10 .15 .01 1 0 1 0%

.0, -.2, -.15 .02 -.00 .28 -.20 .03 -.15 .01 1 0 1 0%

.5, -.2, -.15 .50 .48 .56 -.20 .03 -.15 .01 1 0 1 0%

3, -.2, -.15 3.11 2.97 3.39 -.20 .05 -.15 .01 1 0 1 0%

10, -.2, -.15 10.46 9.93 11.30 -.19 .10 -.15 .01 1 0 1 0%

.0, .2, -.15 .03 .01 .28 .20 .03 -.15 .01 1 0 1 0%

.5, .2, -.15 .56 .52 .56 .20 .03 -.15 .01 1 0 1 0%

3, .2, -.15 3.31 3.12 3.40 .20 .05 -.15 .01 1 0 1 0%

10, .2, -.15 11.97 12.23 9.60 .19 .10 -.15 .01 1 0 1 0%

.0, -.2, .15 -.00 -.01 .30 -.20 .03 .15 .01 1 0 1 0%

.5, -.2, .15 .53 .50 .60 -.20 .03 .15 .01 1 0 1 0%

3, -.2, .15 3.31 3.08 3.53 -.20 .04 .15 .01 1 0 1 0%

10, -.2, .15 11.37 10.62 11.69 -.19 .10 .15 .01 1 0 1 0%

.0, .4, .3 .00 .01 .33 .40 .03 .30 .01 1 0 1 0%

.5, .4, .3 .50 .49 .48 .40 .04 .30 .01 1 0 1 0%

3, .4, .3 2.99 3.04 .46 .40 .04 .30 .01 .99 .01 .92 0%

10, .4, .3 10.00 10.01 .61 .40 .03 .30 .01 .94 .13 .62 4%

.0, -.4, -.3 -.08 -.06 .30 -.40 .03 -.30 .01 1 0 1 0%

.5, -.4, -.3 .31 .35 .58 -.39 .04 -.30 .01 1 0 1 0%

3, -.4, -.3 2.96 2.84 1.47 -.39 .06 -.30 .01 1 0 1 0%

10, -.4, -.3 10.08 10.11 1.24 -.40 .04 -.30 .01 .99 .03 .86 2%

.0, .4, -.3 -.01 .00 .31 .40 .03 -.30 .01 1 0 1 0%

.5, .4, -.3 .51 .48 .48 .40 .04 -.30 .01 1 0 1 0%

3, .4, -.3 3.03 3.04 .46 .40 .04 -.30 .01 .99 .01 .92 1%

10, .4, -.3 9.98 10.02 .63 .40 .03 -.30 .01 .94 .13 .62 2%

.0, -.4, .3 -.06 -.05 .30 -.40 .03 .30 .01 1 0 1 0%

.5, -.4, .3 .23 .32 .58 -.40 .04 .30 .01 1 0 1 0%

3, -.4, .3 2.98 2.87 1.38 -.40 .06 .30 .01 1 0 1 0%

10, -.4, .3 9.98 10.00 1.13 -.40 .04 .30 .01 .99 .03 .86 2%

.0, .8, .6 -.00 -.00 .06 .80 .03 .60 .02 1 0 1 30%

.5, .8, .6 .50 .50 .06 .80 .03 .60 .02 .99 .02 .89 31%

3, .8, .6 2.99 3.00 .07 .80 .02 .60 .01 .59 1.07 .30 54%

10, .8, .6 9.99 9.99 .12 .80 .00 .60 .01 NA NA NA 95%

.0, -.8, -.6 .00 -.01 .27 -.80 .04 -.60 .01 1 0 1 17%

.5, -.8, -.6 .52 .51 .26 -.80 .04 -.60 .01 1 0 1 21%

3, -.8, -.6 3.00 3.00 .26 -.80 .04 -.60 .01 .99 .02 0 34%

10, -.8, -.6 9.98 9.99 .45 -.80 .03 -.60 .01 .89 .24 0 43%

.0, .8, -.6 .00 .00 .06 .80 .03 -.60 .02 1 0 1 32%

.5, .8, -.6 .50 .50 .06 .80 .03 -.60 .02 .99 .02 .89 33%

3, .8, -.6 3.00 3.00 .07 .80 .02 -.60 .01 .58 1.08 .30 58%

10, .8, -.6 9.97 9.99 .13 .80 .00 -.60 .00 NA NA NA 96%

.0, -.8, .6 -.00 -.00 .27 -.80 .04 .60 .01 1 0 1 16%

.5, -.8, .6 .52 .51 .26 -.80 .04 .60 .01 1 0 1 20%

3, -.8, .6 3.01 3.01 .27 -.80 .04 .60 .01 .99 .02 .89 31%

10, -.8, .6 10.04 10.02 .43 -.80 .03 .60 .01 .89 .24 .62 42%

.0, 1.2, .9 .00 .00 .01 1.20 .03 .90 .03 1 0 1 67%

.5, 1.2, .9 .50 .50 .01 1.20 .01 .90 .02 .70 .70 .40 77%

3, 1.2, .9 100%

10, 1.2, .9 100%

.0, -1.2, -.9 -.00 -.00 .11 -1.20 .04 -.90 .01 1 0 1 47%

.5, -1.2, -.9 .49 .50 .11 -1.20 .04 -.90 .01 1 0 1 49%

3, -1.2, -.9 2.99 3.00 .14 -1.20 .03 -.90 .01 .96 .09 .76 56%

10, -1.2, -.9 9.99 9.99 .29 -1.20 .02 -.90 .01 .60 1.03 .31 72%

.0, 1.2, -.9 .00 .00 .01 1.20 .03 -.90 .03 1 0 1 67%

.5, 1.2, -.9 .50 .50 .01 1.20 .02 -.90 .02 .70 .71 .40 76%

3, 1.2, -.9 100%

10, 1.2, -.9 100%

.0, -1.2, .9 .01 .00 .11 -1.20 .04 .90 .01 1 0 1 50%

.5, -1.2, .9 .51 .50 .11 -1.20 .04 .90 .01 1 0 1 52%

3, -1.2, .9 3.00 3.00 .13 -1.20 .04 .90 .01 .96 .09 .76 60%

10, -1.2, .9 10.00 10.00 .30 -1.20 .02 .90 .01 .60 1.03 .31 72%

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based

on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000. Sample medians

(Md), means (Mn), and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘L-rat’ denotes

the likelihood ratio of the null static (i.e. restricted) model vs. the alternative switching model, ‘2�LL’ is the test

statistics of the log-likelihood ratio test being approximately �2
distributed with 1 degree of freedom, and ‘p-v’ is related

p-value of the test. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers. ‘NA’

typically means that the static model is associated with 100% of ‘NaN’ outcomes.
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Table 21: Results of 3-parameter estimation of a 2-type model II.

True (a)

b� (b) cg2 (c)

cb2 (d) LL

�, g2, b2 Md Mn SD Mn SD Mn SD L-rat 2�LL p-v NN

.0, .2, .15 .03 .02 .30 .20 .03 .15 .07 1 0 1 0%

.5, .2, .15 .62 .60 .56 .19 .03 .15 .07 1 0 1 0%

3, .2, .15 3.99 4.13 2.75 .19 .03 .15 .06 1 0 1 0%

10, .2, .15 11.42 11.23 11.08 .18 .04 .14 .05 1 0 1 1%

.0, -.2, -.15 -.06 -.04 .31 -.20 .03 -.15 .07 1 0 1 0%

.5, -.2, -.15 .46 .46 .57 -.20 .03 -.15 .07 1 0 1 0%

3, -.2, -.15 3.14 3.10 3.37 -.18 .04 -.13 .07 1 0 1 0%

10, -.2, -.15 9.54 9.53 11.40 -.16 .06 -.13 .06 1 0 1 1%

.0, .2, -.15 .03 .02 .30 .20 .03 -.15 .07 1 0 1 0%

.5, .2, -.15 .62 .59 .57 .19 .03 -.15 .07 1 0 1 0%

3, .2, -.15 3.99 4.16 2.61 .19 .03 -.15 .06 1 0 1 0%

10, .2, -.15 11.33 11.43 10.87 .18 .04 -.14 .05 1 0 1 0%

.0, -.2, .15 -.05 -.04 .31 -.20 .03 .15 .07 1 0 1 0%

.5, -.2, .15 .49 .49 .56 -.20 .03 .15 .07 1 0 1 0%

3, -.2, .15 3.42 3.37 3.36 -.18 .04 .13 .06 1 0 1 0%

10, -.2, .15 10.43 10.25 11.40 -.16 .06 .12 .06 1 0 1 2%

.0, .4, .3 .00 .01 .15 .40 .03 .30 .07 1 0 1 0%

.5, .4, .3 .49 .55 .26 .40 .03 .30 .07 1 0 1 0%

3, .4, .3 3.95 4.54 2.13 .38 .04 .29 .04 .99 .02 .89 0%

10, .4, .3 12.48 13.14 9.41 .38 .05 .27 .09 .98 .04 .84 4%

.0, -.4, -.3 .00 -.01 .14 -.40 .03 -.30 .07 1 0 1 0%

.5, -.4, -.3 .49 .52 .20 -.40 .03 -.30 .07 1 0 1 0%

3, -.4, -.3 3.96 4.38 2.41 -.38 .06 -.28 .06 .99 .02 .89 0%

10, -.4, -.3 10.76 10.44 10.21 -.33 .13 -.27 .08 .99 .02 .89 11%

.0, .4, -.3 -.00 .00 .15 .40 .03 -.30 .07 1 0 1 0%

.5, .4, -.3 .50 .54 .25 .40 .03 -.30 .07 1 0 1 0%

3, .4, -.3 4.01 4.53 2.05 .38 .04 -.29 .04 .99 .02 .89 0%

10, .4, -.3 12.30 13.17 8.79 .38 .05 -.28 .08 .98 .04 .84 4%

.0, -.4, .3 -.01 -.01 .13 -.40 .03 .30 .07 1 0 1 0%

.5, -.4, .3 .49 .51 .19 -.40 .03 .30 .08 1 0 1 0%

3, -.4, .3 4.03 4.40 2.47 -.38 .06 .28 .06 .99 .02 .89 0%

10, -.4, .3 10.42 9.92 10.17 -.33 .14 .26 .09 .99 .02 .89 12%

.0, .8, .6 .00 .00 .03 .80 .03 .60 .07 1 0 1 0%

.5, .8, .6 .50 .50 .07 .80 .03 .60 .06 .97 .05 .82 3%

3, .8, .6 3.01 3.04 .37 .80 .02 .60 .03 .83 .36 .55 23%

10, .8, .6 10.24 10.54 2.16 .80 .01 .60 .02 .75 .56 .45 72%

.0, -.8, -.6 .00 .00 .02 -.80 .03 -.60 .07 1 0 1 0%

.5, -.8, -.6 .50 .51 .08 -.80 .03 -.60 .08 .98 .04 .84 0%

3, -.8, -.6 3.19 3.61 2.47 -.74 .18 -.57 .09 .94 .12 .73 4%

10, -.8, -.6 8.50 4.97 8.61 -.57 .33 -.44 .26 .95 .09 .76 44%

.0, .8, -.6 -.00 -.00 .03 .80 .03 -.60 .07 1 0 1 0%

.5, .8, -.6 .50 .50 .07 .80 .03 -.60 .06 .97 .05 .82 2%

3, .8, -.6 3.00 3.04 .36 .80 .02 -.60 .03 .83 .36 .55 23%

10, .8, -.6 10.19 10.51 2.22 .80 .01 -.60 .02 .75 .57 .45 69%

.0, -.8, .6 .00 .00 .02 -.80 .03 .60 .07 1 0 1 0%

.5, -.8, .6 .50 .50 .08 -.80 .03 .60 .07 .98 .04 .84 1%

3, -.8, .6 3.19 3.62 2.38 -.75 .17 .57 .08 .94 .12 .73 4%

10, -.8, .6 8.56 5.67 8.17 -.60 .32 .46 .25 .95 .11 .74 44%

.0, 1.2, .9 -.00 .00 .01 1.20 .02 .90 .07 1 0 1 25%

.5, 1.2, .9 100%

3, 1.2, .9 100%

10, 1.2, .9 100%

.0, -1.2, -.9 .00 .00 .01 -1.20 .03 -.90 .07 1 0 1 19%

.5, -1.2, -.9 .50 .51 .05 -1.20 .03 -.90 .07 .91 .19 .66 28%

3, -1.2, -.9 2.97 2.39 2.06 -1.07 .34 -.79 .34 .83 .38 .46 48%

10, -1.2, -.9 7.86 3.28 7.85 -.82 .50 -.54 .54 .88 .25 .62 88%

.0, 1.2, -.9 .00 .00 .01 1.20 .03 -.90 .07 1 0 1 23%

.5, 1.2, -.9 100%

3, 1.2, -.9 100%

10, 1.2, -.9 100%

.0, -1.2, .9 .00 .00 .01 -1.20 .03 .90 .07 1 0 1 18%

.5, -1.2, .9 .50 .50 .05 -1.20 .03 .90 .07 .91 .19 .66 26%

3, -1.2, .9 2.94 2.34 1.95 -1.08 .34 .81 .30 .83 .38 .46 50%

10, -1.2, .9 8.25 3.21 8.26 -.79 .52 .57 .50 .89 .23 .63 89%

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 1), R = 1.0001. Each sample is based on

1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000. Sample medians

(Md), means (Mn), and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘L-rat’ denotes

the likelihood ratio of the null static (i.e. restricted) model vs. the alternative switching model, ‘2�LL’ is the test

statistics of the log-likelihood ratio test being approximately �2
distributed with 1 degree of freedom, and ‘p-v’ is related

p-value of the test. ‘NN’ column reports the percentage of runs with ‘NaN’ outcome rounded to integer numbers. ‘NA’

typically means that the static model is associated with 100% of ‘NaN’ outcomes.
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Table 22: Results of 5-parameter estimation of a 3-type model I.

True �, g2, b2, g3, b3 (a)

b� (b) cg2 (c)

cb2 (d) cg3 (e)

cb3

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD NN

.5, .4, .3, .2, .15 .39 .45 .53 .37 .38 .27 .25 .28 .19 .24 .22 .27 .20 .17 .19 0%

3, .4, .3, .2, .15 2.53 2.77 1.66 .37 .38 .30 .25 .28 .19 .23 .21 .30 .20 .17 .19 0%

10, .4, .3, .2, .15 9.23 8.70 4.23 .34 .35 .25 .24 .26 .16 .25 .24 .25 .22 .19 .16 1%

.5, -.4, -.3, .2, .15 .46 .53 .50 -.53 -.53 .17 -.26 -.28 .11 .34 .33 .18 .11 .13 .11 0%

3, -.4, -.3, .2, .15 2.87 2.92 3.22 -.39 -.40 .16 -.24 -.27 .12 .23 .26 .19 .09 .12 .11 0%

10, -.4, -.3, .2, .15 11.16 11.10 10.62 -.35 -.35 .17 -.25 -.27 .12 .21 .28 .19 .10 .13 .11 0%

.5, -.4, .3, .2, -.15 .50 .55 .50 -.53 -.53 .17 .26 .28 .11 .34 .34 .17 -.11 -.13 .11 0%

3, -.4, .3, .2, -.15 2.76 2.84 3.32 -.38 -.40 .17 .24 .26 .11 .24 .27 .20 -.09 -.11 .11 0%

10, -.4, .3, .2, -.15 12.14 12.27 10.45 -.35 -.36 .17 .25 .28 .12 .20 .26 .18 -.10 -.14 .11 0%

.5, .8, .6, .4, .3 .51 .48 .19 .75 .78 .45 .45 .50 .33 .45 .42 .45 .45 .40 .33 25%

3, .8, .6, .4, .3 2.47 2.32 .90 .59 .65 .41 .44 .48 .29 .62 .55 .41 .45 .41 .29 45%

10, .8, .6, .4, .3 9.97 9.89 .75 .79 .63 .20 .59 .47 .15 .42 .58 .21 .31 .43 .15 89%

.5, -.8, -.6, .4, .3 .33 .43 .34 -1.00 -1.01 .30 -.69 -.71 .22 .61 .62 .31 .39 .41 .22 0%

3, -.8, -.6, .4, .3 2.29 3.15 2.49 -.85 -.91 .26 -.64 -.66 .22 .49 .54 .30 .34 .37 .21 9%

10, -.8, -.6, .4, .3 10.06 10.12 2.09 -.80 -.80 .06 -.60 -.60 .05 .40 .41 .09 .30 .30 .04 37%

.5, -.8, .6, .4, -.3 .34 .43 .34 -1.02 -1.01 .32 .69 .73 .23 .62 .61 .33 -.39 -.43 .23 0%

3, -.8, .6, .4, -.3 2.49 3.32 2.51 -.83 -.89 .26 .62 .66 .21 .45 .51 .28 -.33 -.36 .21 8%

10, -.8, .6, .4, -.3 10.03 10.05 2.67 -.80 -.79 .07 .60 .59 .06 .40 .41 .12 -.30 -.29 .05 37%

.5, 1.2, .9, .8, .6 .50 .43 .15 1.04 1.08 .60 .77 .82 .58 .96 .92 .60 .71 .68 .58 85%

3, 1.2, .9, .8, .6 100%

10, 1.2, .9, .8, .6 100%

.5, -1.2, .-9, .8, .6 .26 .32 .30 -1.58 -1.60 .46 -1.12 -1.14 .43 1.22 1.23 .49 .82 .84 .42 5%

3, -1.2, .-9, .8, .6 2.79 2.49 1.15 -1.24 -1.32 .24 -.91 -.88 .25 .84 1.02 .49 .61 .59 .23 62%

10, -1.2, -.9, .8, .6 100%

.5, -1.2, .9, .9, -.6 .24 .32 .31 -1.60 -1.60 .45 1.15 1.14 .43 1.22 1.23 .49 -.85 -.85 .43 5%

3, -1.2, .9, .9, -.6 2.74 2.38 1.18 -1.24 -1.34 .25 .91 .88 .26 .85 1.05 .51 -.61 -.59 .25 62%

10, -1.2, .9, .8, -.6 100%

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based on 1000 random runs, number of observations t = 5000,

and the kernel estimation precision N = 1000. Sample medians, means, standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports

the percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 23: Results of 5-parameter estimation of a 3-type model II.

True �, g2, b2, g3, b3 (a)

b� (b) cg2 (c)

cb2 (d) cg3 (e)

cb3

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD NN

.5, .4, .3, .2, .15 .39 .48 .35 .30 .33 .23 .25 .25 .19 .27 .25 .22 .22 .20 .18 0%

3, .4, .3, .2, .15 3.33 3.86 2.43 .35 .33 .16 .26 .26 .14 .23 .24 .16 .21 .18 .14 0%

10, .4, .3, .2, .15 10.61 12.69 8.15 .37 .31 .13 .27 .24 .12 .25 .25 .15 .20 .18 .12 3%

.5, -.4, -.3, .2, .15 .42 .57 .40 -.42 -.45 .14 -.32 -.34 .13 .21 .24 .15 .16 .18 .12 0%

3, -.4, -.3, .2, .15 3.56 3.53 3.17 -.35 -.31 .14 -.25 -.23 .12 .17 .15 .08 .12 .12 .07 0%

10, -.4, -.3, .2, .15 10.33 9.05 10.12 -.37 -.29 .17 -.27 -.22 .13 .18 .14 .09 .13 .12 .06 11%

.5, -.4, .3, .2, -.15 .41 .56 .40 -.43 -.45 .14 .32 .33 .13 .21 .24 .14 -.17 -.19 .12 0%

3, -.4, .3, .2, -.15 3.80 3.51 3.31 -.35 -.30 .14 .25 .22 .12 .17 .14 .08 -.12 -.12 .06 0%

10, -.4, .3, .2, -.15 10.28 9.37 10.02 -.37 -.30 .16 .27 .22 .13 .18 .15 .09 -.13 -.12 .06 12%

.5, .8, .6, .4, .3 .47 .45 .18 .72 .68 .34 .52 .52 .29 .49 .51 .34 .42 .38 .28 1%

3, .8, .6, .4, .3 2.94 2.99 .41 .46 .57 .21 .37 .42 .17 .77 .63 .21 .56 .47 .17 21%

10, .8, .6, .4, .3 9.41 9.68 2.83 .51 .56 .23 .37 .42 .20 .79 .64 .22 .58 .46 .19 70%

.5, -.8, -.6, .4, .3 .49 .52 .19 -.81 -.81 .09 -.60 -.61 .10 .40 .41 .08 .30 .31 .08 0%

3, -.8, -.6, .4, .3 2.94 2.43 1.76 -.79 -.70 .27 -.59 -.53 .19 .39 .35 .13 .30 .30 .05 7%

10, -.8, -.6, .4, .3 8.26 3.09 7.90 -.78 -.46 .40 -.56 -.35 .29 .38 .23 .20 .28 .27 .09 67%

.5, -.8, .6, .4, -.3 .49 .52 .18 -.81 -.81 .09 .60 .61 .10 .40 .41 .07 -.30 -.31 .08 0%

3, -.8, .6, .4, -.3 2.96 2.52 1.68 -.80 -.71 .25 .59 .54 .18 .39 .35 .13 -.29 -.29 .05 5%

10, -.8, .6, .4, -.3 8.56 4.07 7.65 -.79 -.50 .39 .58 .38 .28 .39 .25 .19 -.28 -.27 .09 69%

.5., 1.2, .9, .8, .6 100%

3, 1.2, .9, .8, .6 100%

10, 1.2, .9, .8, .6 100%

.5, -1.2, -.9, .8, .6 .51 .49 .14 -1.19 -1.16 .17 -.89 -.87 .14 .79 .77 .12 .59 .60 .07 86%

3, -1.2, -.9, .8, .6 100%

10, -1.2, -.9, .8, .6 100%

.5, -1.2, .9, .8, -.6 .51 .49 .12 -1.19 -1.16 .18 .89 .87 .14 .79 .77 .12 -.60 -.62 .13 87%

3, -1.2, .9, .8, -.6 100%

10, -1.2, .9, .8, -.6 100%

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 1), R = 1.0001. Each sample is based on 1000 random runs, number of observations t = 5000, and

the kernel estimation precision N = 1000. Sample medians, means, standard deviations (SD) are reported. Figures are rounded to 2 decimal digits. ‘NN’ column reports the

percentage of runs with ‘NaN’ outcome rounded to integer numbers.
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Table 24: Empirical results of the 2-type fraction model estimation

Data, MA period (a) \fraction (b) bg
2

(c) bb
2

(d) \noise intensity (e) LL

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD

SP500, 61 .569 .555 .088 1.963 1.986 .362 .006 .003 .121 .559 .558 .044 -4.022 -4.023 .013
NASDAQ, 61 .555 .541 .086 1.972 1.985 .344 -.001 -.001 .117 .565 .566 .054 -5.118 -5.119 .019

DAX, 61 .559 .547 .090 2.006 2.021 .387 .008 .005 .123 .489 .490 .035 -5.733 -5.733 .011
FTSE, 61 .556 .545 .085 1.980 1.997 .357 -.009 -.007 .121 .519 .520 .037 -5.507 -5.507 .011

HSI, 61 .559 .549 .082 1.993 2.020 .344 -.006 -.001 .120 .531 .531 .045 -6.999 -7.000 .016
N225, 61 .562 .553 .084 1.995 2.023 .361 .005 .001 .124 .482 .484 .032 -6.700 -6.701 .010

SP500, 241 .562 .556 .084 2.161 2.228 .425 .002 -.001 .133 .331 .348 .053 -4.073 -4.088 .049
NASDAQ, 241 .562 .556 .086 2.191 2.244 .434 -.002 -.001 .133 .311 .345 .077 -5.195 -5.231 .089

DAX, 241 .565 .559 .088 2.219 2.275 .455 .013 .003 .137 .256 .279 .069 -5.782 -5.814 .086
FTSE, 241 .562 .554 .087 2.179 2.227 .445 -.002 .003 .133 .322 .339 .053 -5.547 -5.563 .045

HSI, 241 .562 .554 .084 2.204 2.253 .446 -.009 -.006 .137 .276 .304 .070 -7.057 -7.095 .091
N225, 241 .570 .562 .087 2.232 2.281 .460 -.012 -.005 .138 .255 .272 .058 -6.744 -6.767 .069

Robustness check

SP500 monthly, 13 .606 .592 .114 1.429 1.451 .306 -.000 .000 .116 .806 .801 .064 -5.150 -5.153 .014
SP500 weekly, 13 .635 .616 .128 1.404 1.422 .309 -.011 -.004 .115 .853 .848 .063 -4.598 -4.603 .028
SP500 weekly, 49 .485 .483 .093 1.591 1.624 .292 .012 .006 .117 .606 .606 .057 -4.721 -4.722 .017

SP500 R=1.001, 61 .566 .553 .089 1.967 1.984 .368 -.004 -.004 .121 .557 .557 .044 -4.022 -4.022 .013
SP500 R=1.001, 241 .570 .557 .085 2.220 2.239 .430 .003 -.001 .132 .332 .349 .054 -4.074 -4.089 .047

Note: Results are based on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 500. Sample medians, means, and
standard deviations (SD) are reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are rounded to 3 decimal digits.
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Appendix 2: Supplementary figures

On the following pages, supplementary figures are provided.
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Figure 7: Simulation results for various number of runs and �s I.

(a) 100 runs, � = 0, N(0, 22)
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(c) 500 runs, � = 0, N(0, 22)
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(d) 500 runs, � = 0.5, N(0, 1)
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(e) 1000 runs, � = 0, N(0, 22)
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(f) 1000 runs, � = 0.5, N(0, 1)
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Note: Stochastic noise ✏t and {"i}Ni=1

drawn from given normal distributions. Black dotted lines with ⇥ depict the true �.
Grey full lines depict sample means of estimated �. Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour
represents results for N = 100, normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the
length of generated time series.
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Figure 8: Simulation results for various number of runs and �s II.

(a) 100 runs, � = 3, N(0, 0.12)

× × × × ×

102 5×102 103 5×103 104
t

-2

2

4

6

8

β
⋀

(b) 100 runs, � = 10, N(0, 0.12)
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(c) 500 runs, � = 3, N(0, 0.12)
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(d) 500 runs, � = 10, N(0, 0.12)
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(e) 1000 runs, � = 3, N(0, 0.12)
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(f) 1000 runs, � = 10, N(0, 0.12)
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Note: Stochastic noise ✏t and {"i}Ni=1

drawn from given normal distributions. Black dotted lines with ⇥ depict the true �.
Grey full lines depict sample means of estimated �. Grey dashed lines depict 2.5% and 97.5% quantiles. Light grey colour
represents results for N = 100, normal grey for N = 500, and dark grey for N = 1000. ‘t’ (horizontal axis) stands for the
length of generated time series.
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Figure 9: Smooth histograms for selected b
�s

(a) � = 0, N(0, 0.12)
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Note: Stochastic noise ✏t and {"i}Ni=1

drawn from given normal distributions, R = 1.0001. Each sample is based on 1000
random runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel estimation precision N = 1000.
Black dotted lines depict the true �s. Produced using automatic SmoothHistogram kernel approximation function in Wolfram

Mathematica.
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Figure 10: Simulated sub-log-likelihood fcns. for g
2

and b

2

estimation
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Note: Results based on 100 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000. Stochastic noise ✏t and {"i}Ni=1

drawn from
given normal distribution. Black dotted vertical lines depict the true g

2

= 0.4 and b
2

= 0.3. Bold black full lines depict sample averages.
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Figure 11: Simulated sub-log-likelihood functions in 3D
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Note: Results averaged over 30 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000.
The complete set of true parameters: � = 0.5, g

2

= 0.4, b
2

= 0.3. Stochastic noise ✏t and {"i}Ni=1

drawn from given normal
distribution.
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Figure 12: S&P500 fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 13: S&P500 fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 14: NASDAQ fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 15: NASDAQ fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 16: DAX fundamental price MA61 approximation

(a) MA window 61 days

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2000

4000

6000

8000

10000

P
ric
e

Asian
Crisis

Rubble
Devaluation

Dot-com
Bubble Burst

WTC 9/11
Attack

Lehman
Bankrupcy

Flash
Crash

USA
↓ to AA+

(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 17: DAX fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 18: FTSE fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

-1000

-500

0

500

1000

x t

Asian
Crisis

Rubble
Devaluation

Dot-com
Bubble Burst

WTC 9/11
Attack

Lehman
Bankrupcy

Flash
Crash

USA
↓ to AA+
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 19: FTSE fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 20: HSI fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 21: HSI fundamental price MA241 approximation

(a) MA window 241 days
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(b) xt time series
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(c) xt histogram
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 22: NIKKEI 225 fundamental price MA61 approximation

(a) MA window 61 days
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(b) xt time series
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 61 days centred MA in light
grey. (b) plots the implied xt = pt�p⇤t . The figure also depicts several important stock market crashes (marked as vertical black
lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel approximation
format in black together with the fit of N (µ,�2) in grey.
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Figure 23: NIKKEI 225 fundamental price MA241 approximation

(a) MA window 241 days
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Note: (a) depicts the original price pt in blacks and the fundamental price p⇤t approximation via 241 days centred MA in
light grey. (b) plots the implied xt = pt � p⇤t . The figure also depicts several important stock market crashes (marked as
vertical black lines) and recession periods (depicted in grey). (c) shows the same data as (b) in a smooth histogram kernel
approximation format in black together with the fit of N (µ,�2) in grey.
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Figure 24: Simulated sub-log-likelihood functions in 3D
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Note: Results averaged over 100 random runs, S&P500 data, MA61 fundamental price approximation, number of observations t = 5000, and the kernel estimation
precision N = 1000. {"i}Ni=1

drawn from normal distribution. Black dotted lines in horizontal projections depict the true values of parameters.
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Figure 25: Smooth histogram of the contrarian coe�cient g
3

(a) S&P500 MA 61
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Note: Results are based on 500 random runs. Produced using automatic SmoothHistogram kernel approximation function in
Wolfram Mathematica.
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Figure 26: Simulated sub-log-likelihood fcns. for single parameters
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Note: Results based on 100 random runs, S&P500 data, given MA fundamental price approximation, number of observations
t = 5000, and the kernel estimation precision N = 1000. {"i}Ni=1

drawn from normal distribution. Black dotted vertical lines
depict estimated parameters (see Table 24).
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Appendix 3: Rolling HAM estimates
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Figure 27: Rolling estimates of the 2-type model for S&P500

(a) MA61 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 28: Rolling estimates of the 2-type � model for NASDAQ

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 29: Rolling estimates of the 2-type � model for DAX

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 30: Rolling estimates of the 2-type � model for FTSE

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 31: Rolling estimates of the 2-type � model for HSI

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 32: Rolling estimates of the 2-type � model for NIKKEI 225

(a) MA61 fundamental price approximation
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(b) MA241 fundamental price approximation
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(c) MA61—related standard deviations
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(d) MA241—related standard deviations
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Note: Bold black full line depicts b�, black full line depicts bg
2

, and grey full line depicts bb
2

. \noise intensity and LL are
represented by ⇥ and •, respectively. Results are based on 200 random runs, length of the rolling window is 240 days with 40
days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution. Sample medians are reported.
The figure also depicts several important stock market crashes (marked as vertical black lines) and recession periods (depicted
in grey).
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Figure 33: Rolling behaviour of the SD of the bg
2

estimate II.

(a) DAX MA61 fundamental price approximation
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(b) FTSE MA61 fundamental price approximation

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0.0

0.1

0.2

0.3

0.4

V
al
ue
s

Asian
CrisisRubble

Devaluation

Dot-com
Bubble Burst WTC 9/11

Attack

Lehman
Bankrupcy Flash

Crash

USA
↓ to AA+

(c) HSI MA61 fundamental price approximation
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(d) NIKKEI 225 MA61 fundamental price approximation
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Note: Bold black full line depicts standard deviation of the bg
2

estimate. Results are based on 200 random runs, length of
the rolling window is 240 days with 40 days steps, and the kernel estimation precision N = 500 i.i.d. draws from normal
distribution. Sample medians are reported. The figure also depicts several important stock market crashes (marked as vertical
black lines) and recession periods (depicted in grey).

98



 

IES Working Paper Series 

 

2016  
1. Jiri Skuhrovec, Jan Soudek: zIndex – Benchmarking Municipalities in Public 

Procurement  

2. Diana Zigraiova: Management Board Composition of Banking Institutions and Bank 
Risk-Taking: The Case of the Czech Republic 

3. Tomas Havranek, Roman Horvath, Ayaz Zeynalov: Natural Resources and 
Economic Growth: A Meta-Analysis 

4. Roman Horvath, Lorant Kaszab: Equity Premium and Monetary Policy in a Model 
with Limited Asset Market Participation 

5. Jana Votapkova, Pavlina Zilova: Determinants of Generic Substitution in the Czech 
Republic 

6. Vojtech Korbelius, Michal Paulus, Tomas Troch: Life Expectancy and its 
Determinants in the Czech Republic 

7. Jiri Kukacka, Jozef Barunik: Simulated ML Estimation of Financial Agent-Based 
Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All papers can be downloaded at: http://ies.fsv.cuni.cz 
                                                           

 

    Univerzita Karlova v Praze, Fakulta sociálních věd 

Institut ekonomických studií [UK FSV – IES]  Praha 1, Opletalova 26 

E-mail : ies@fsv.cuni.cz             http://ies.fsv.cuni.cz 

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

	Introduction
	Literature review: methods and results
	The use of econometric techniques
	Performance of ML and Quasi ML
	Switching

	Simulation-based estimation of FABMs: the case of Brock & Hommes HAM
	The BrHo1998 model
	Heterogeneous beliefs
	Selection of strategies
	Basic belief types

	Construction of the NPSMLE
	Advantages and disadvantages
	Asymptotic properties

	Monte Carlo study: NPSMLE of the HAM
	Simulation setup for the HAM
	Simulation setup for the NPSMLE
	Monte Carlo results
	 estimation in the general model
	Qualitative results
	Quantitative results
	Behaviour of the simulated log-likelihood function
	Robustness check
	2-type model estimation
	Quantitative results
	Behaviour of the simulated log-likelihood function
	Likelihood-ratio test
	3-type model estimation


	HAM estimation on empirical data
	The estimation setting
	Fundamental price approximation
	Data description
	Static NPSMLE estimates
	Full sample estimates of the 2-type model
	Behaviour of the simulated log-likelihood function
	Robustness check of the 2-type model
	Full sample estimates of the 3-type model

	Rolling NPSMLE estimates
	Rolling estimates of the 2-type model

	Estimation of market fractions
	Full sample estimates of the 2-type fraction model
	Behaviour of the simulated log-likelihood function
	Robustness check of the 2-type fraction model


	Conclusion

