Please use this identifier to cite or link to this item:
Meyer, Brent
Zaman, Saeed
Year of Publication: 
Series/Report no.: 
Working Paper No. 2016-13
In this paper we investigate the forecasting performance of the median Consumer Price Index (CPI) in a variety of Bayesian vector autoregressions (BVARs) that are often used for monetary policy. Until now, the use of trimmed-mean price statistics in forecasting inflation has often been relegated to simple univariate or Phillips curve approaches, thus limiting their usefulness in applications that require consistent forecasts of multiple macro variables. We find that inclusion of an extreme trimmed-mean measure - the median CPI - improves the forecasts of both core and headline inflation (CPI and personal consumption expenditures) across our set of monthly and quarterly BVARs. Although the inflation forecasting improvements are perhaps not surprising given the current literature on core inflation statistics, we also find that inclusion of the median CPI improves the forecasting accuracy of the central bank's primary instrument for monetary policy: the federal funds rate. We conclude with a few illustrative exercises that highlight the usefulness of using the median CPI.
inflation forecasting
trimmed-mean estimators
Bayesian vector autoregression
conditional forecasting
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.