Please use this identifier to cite or link to this item:
Sharma, G. V. S. S.
Rao, R. Umamaheswara
Rao, P. Srinivasa
Year of Publication: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 13 [Year:] 2017 [Issue:] 2 [Pages:] 215-228
High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio (S/N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.
Design of experiments (DOE)
Analysis of variance (ANOVA)
Signal to noise (S/N) ratio
Taguchi approach
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.