Please use this identifier to cite or link to this item:
Palombi, Filippo
Toti, Simona
Year of Publication: 
[Journal:] Games [ISSN:] 2073-4336 [Volume:] 8 [Year:] 2017 [Issue:] 1 [Pages:] 1-21
The Naming Game is an agent-based model where individuals communicate to name an initially unnamed object. On a large class of networks continual pairwise interactions lead the system to an ultimate consensus state, in which agents onverge on a globally shared name. Soon after the introduction of the model, it was observed in literature that on community-based networks the path to consensus passes through metastable multi-language states. Subsequently, it was proposed to use this feature as a mean to discover communities in a given network. In this paper we show that metastable states correspond to genuine multi-language phases, emerging in the thermodynamic limit when the fraction of links connecting communities drops below critical thresholds. In particular, we study the transition to multi-language states in the stochastic block model and on networks with community overlap. We also xamine the scaling of critical thresholds under variations of topological properties of the network, such as the number and relative size of communities and the structure of intra-/inter-community links. Our results provide a theoretical justification for the proposed use of the model as a community-detection algorithm.
Naming Game
community-based networks
mean field theory
phase diagram
stochastic simulations
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 
Appears in Collections:

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.