
Palombi, Filippo; Toti, Simona

Article

Topological aspects of the multi-language phases of the
naming game on community-based networks

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Palombi, Filippo; Toti, Simona (2017) : Topological aspects of the multi-language
phases of the naming game on community-based networks, Games, ISSN 2073-4336, MDPI, Basel,
Vol. 8, Iss. 1, pp. 1-21,
https://doi.org/10.3390/g8010012

This Version is available at:
https://hdl.handle.net/10419/168014

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g8010012%0A
https://hdl.handle.net/10419/168014
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


games

Article

Topological Aspects of the Multi-Language Phases of
the Naming Game on Community-Based Networks

Filippo Palombi 1,* and Simona Toti 2

1 ENEA—Italian Agency for New Technologies, Energy and Sustainable Economic Development,
Via E. Fermi 45, 00044 Frascati, Italy

2 ISTAT—Italian National Institute of Statistics, Via C. Balbo 16, 00184 Rome, Italy; simona.toti@istat.it
* Correspondence: filippo.palombi@enea.it

Academic Editors: Attila Szolnoki and Ulrich Berger
Received: 2 November 2016; Accepted: 2 February 2017; Published: 9 February 2017

Abstract: The Naming Game is an agent-based model where individuals communicate to name an
initially unnamed object. On a large class of networks continual pairwise interactions lead the system
to an ultimate consensus state, in which agents converge on a globally shared name. Soon after the
introduction of the model, it was observed in literature that on community-based networks the path
to consensus passes through metastable multi-language states. Subsequently, it was proposed to
use this feature as a mean to discover communities in a given network. In this paper we show that
metastable states correspond to genuine multi-language phases, emerging in the thermodynamic
limit when the fraction of links connecting communities drops below critical thresholds. In particular,
we study the transition to multi-language states in the stochastic block model and on networks with
community overlap. We also examine the scaling of critical thresholds under variations of topological
properties of the network, such as the number and relative size of communities and the structure of
intra-/inter-community links. Our results provide a theoretical justification for the proposed use of
the model as a community-detection algorithm.

Keywords: Naming Game; community-based networks; mean field theory; phase diagram;
stochastic simulations

PACS: 05.40.-a, 05.65.+b, 05.70.Fh

1. Introduction

The emergence of spoken languages and their continuous evolution in human societies are
complex phenomena in which interaction and self-organization play an essential role. Lying at the
heart of opinion dynamics [1], these features have attracted great interest from researchers in statistical
physics over the past twenty years. After some attempts to ascribe the origin of language conventions
to evolutionary mechanisms [2–7], in ref. [8] a multi-agent model was proposed where the rise of
a globally shared language occurs with no underlying guiding principle and no external influence.
The model, known as the Naming Game (NG), was inspired by the seminal work of refs. [9,10].

The NG is a language-game in the sense of ref. [11], with agents iteratively communicating
to each other conventional names for a target object. Each agent is endowed with a notebook,
in which he/she writes names. In the original version of the model all notebooks are initially empty.
Elementary interactions involve two agents, playing respectively the role of speaker and listener. In each
iteration the speaker is chosen randomly among the agents, while the listener is chosen randomly
among the speaker’s neighbours. The speaker-listener interaction is schematically described by the
flowchart reported in Figure 1.
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Figure 1. Speaker-listener interaction.

Following ref. [8], the dynamics of the NG was investigated on networks with several topologies,
including the fully connected graph [8,12], low-dimensional regular lattices [13], Erdős-Rényi (ER)
graphs [14], small-world networks [15], Barabási-Albert (BA) networks [14,16], etc. In all cases,
the system was found to evolve dynamically with the number of different competing names initially
inflating and then deflating due to self-organization, until the whole population agrees spontaneously
on an ultimate name for the target object (consensus). Theoretical predictions derived from the NG
have recently been shown to correctly reproduce experimental results in Web-based live games with
controlled design [17].

In ref. [14] it was first pointed out that convergence to consensus follows a special pattern on
community-based networks. Here, after a “creative” transient during which the number of different
competing names inflates, the system relaxes to an equilibrium where different communities reach local
consensus on different names. In a finite time dynamical fluctuations break the equilibrium and make
the system fall into global consensus. The presence of metastable equilibria was soon realized to be of
practical worth. In ref. [18] it was shown that local consensus might be used to identify communities
in empirical networks. In a sense, this ratified the entrance of the NG into a large family of community
detection algorithms [19–25]. More recently, the goodness of the community partition operated by the
NG was investigated in terms of quality indicators [26] (such as the partition modularity [27]) on the
benchmark networks of ref. [28]. It is important to recall that community detection is a major problem
in network science, since modular networks arise in a variety of applicative contexts (see for instance
refs. [20,29,30]). It is also worth noting that the presence of metastable equilibria is not an exclusive
feature of the NG. A similar phenomenon is observed in other models of opinion dynamics, such as
the majority rule model [31] and an extension of the Axelrod model [32].

While local consensus exists on finite networks only in the form of metastable equilibrium,
it becomes fully stable in the thermodynamic limit provided communities are sufficiently isolated.
As a consequence, the phase diagram of the model develops a very rich structure. Communities agree
or disagree on the ultimate name of their choice depending on how strongly they are connected to each
other. Networks on which equal combinations of names survive at equilibrium in the thermodynamic
limit correspond to the same multi-language phase. Despite a growing body of literature, a systematic
study of the phase structure of the NG on community-based networks is still lacking. Aim of the
present paper is to contribute to filling this gap. Studying the phase structure is important in order to
identify theoretical limits within which the model can be used effectively as a community detection
algorithm. However, phases depend upon all topological properties of communities, including their
number, overlaps, relative size, internal topology and the topology of their interconnections. Since an
overall parameterization of all such features is not given, we are forced to adopt a case-by-case strategy,
where we investigate the transition to multi-language phases on groups of networks with distinct
topological features.

We can summarize the results of our study by stating that (i) steady multi-languages states arise
in the thermodynamic limit when links connecting agents in different communities are about 10%–20%
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or less of those connecting agents within their respective communities and (ii) multi-language phases
look rather robust against changes in the network topology.

Before we start, we mention that multi-language phases are also observed in the NG under
variations of its microscopic dynamics. Examples are the introduction of noise in the loss of memory
when two agents agree on a given name [33] or the introduction of single/opposing committed groups
of agents who never change their notebook in time [34,35]. The difference is that communities produce
stable multi-language states as a purely topological effect. This is a distinguishing feature of the NG:
in other models of opinion dynamics communities are unable to hinder the convergence to global
consensus, independently of their degree of isolation, even in the thermodynamic limit. An example
is represented by the voter model [36], where global consensus can be avoided only by introducing
zealot agents [37,38] with competing opinions.

The plan of the paper is as follows. In Section 2 we set up the notation and introduce the
relative inter-community connectedness, a parameter that we use to compare results on different
two-community symmetric networks. In Section 3 we investigate the phase diagram of the
NG in the stochastic block model [39]. In Section 4, we work out the exact solution to its
mean field equations (MFEs) in the special case of the planted partition model [40,41] with two
communities. In Section 5 we derive MFEs for the NG on a network made of two overlapping
cliques, then we work out an almost fully analytic solution to them. In Section 6 we study how
the phase transition depends on the number of communities in the planted partition model and
in Section 7 we study how it depends on their relative size. In Section 8 we extend our study to
heterogeneous networks by means of Monte Carlo simulations. Finally, we draw our conclusions
in Section 9.

2. Relative Connectedness in Two-Community Symmetric Networks

We consider a graph G = (V , E) and a partition VC = {C(k)}Q
k=1 of V , i.e., we assume V = ∪Q

k=1C
(k)

and C(i) ∩ C(k) = ∅ for i 6= k. We let N(k) = |C(k)| > 0 and N = |V|, hence we have N = ∑Q
k=1 N(k).

Then we observe that VC induces a partition EC = {E (ik)}Q
i,k=1 of E , i.e., E = ∪Q

ik=1E
(ik) with

E (ik) = { (x, y) : x ∈ C(i) and y ∈ C(k)} . (1)

We take (x, y) as an ordered pair. This implies by no means that the graph is either directed or
undirected, but only that if (x, y) ∈ E (i,k), then (x, y) /∈ E (k,i), for i 6= k. In particular, an undirected
graph is obtained by requesting that (x, y) ∈ E iff (y, x) ∈ E and by considering (x, y) = (y, x). In the
sequel we always assume undirected graphs with (x, x) /∈ E for all x. We say that VC displays an
explicit community structure (ECS) provided

|E (i,k)| � min(|E (ii)|, |E (kk)|) , for all i 6= k . (2)

If Equation (2) is fulfilled, we interpret the sets C(k) as communities of agents. Although restrictive, the
above ECS conditions leave several topological features of G totally unspecified. For instance, in static
network models (which are, however, unfit to describe realistic networks [42]) the topology is defined
by assigning the Q + 1 deterministic parameters Q, {N(k)}Q

k=1 and the edge probability laws

p(ik)(x, y) = prob
{
(x, y) ∈ E (ik)

∣∣∣∣ x ∈ C(i) and y ∈ C(k)
}

, i, k = 1, . . . , Q . (3)

In principle the functions p(ik)(x, y) may be arbitrarily complex. They may depend explicitly on the
community indexes (ik), i.e., for each choice of these they may depend upon different discrete or
continuous parameters. Indeed, different static network models correspond to different settings of
the above degrees of freedom. As such, they allow to explore (limited) subsets of the wider ensemble
defined by ECS conditions.
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A relevant question is how to compare results for an agent-based model running on different
network models, when these are defined in terms of different parameters. Unfortunately, there exists
no universal answer to such question. Yet, for two-community networks which are symmetric under
exchange of community indexes, we can use a simple indicator that allows to make comparisons.
The indicator measures the relative extent to which communities are connected to each other rather
than to themselves. To define it, we start from the notion of node degree, which counts the number of
neighbours of a given node, and extend it to entire communities. We first introduce the inner average
degree of the ith community

〈κ(i)in 〉 =
1

N(i)

〈
∑

x,y∈C(i)
1E (i,i)(x, y)

〉
=

2〈|E (ii)|〉
N(i)

, i = 1, 2 , (4)

where 1A(x) denotes the indicator function of A (i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise) and
the symbol 〈 · 〉 represents an average over the corresponding network model. By definition, we have
〈κ(1)in 〉 = 〈κ

(2)
in 〉 on two-community symmetric networks. Then, we introduce the outer average degree

of the ith to kth community

〈κ(i,k)out 〉 =
1

N(i)

〈
∑

x∈C(i)
∑

y∈C(k)
1E (i,k)(x, y)

〉
=
〈|E (ik)|〉

N(i)
, i 6= k , (5)

and again we observe that 〈κ(12)
out 〉 = 〈κ

(21)
out 〉 on two-community symmetric networks. Finally, we define

the relative inter-community connectedness as the ratio

γout/in =
〈κ(12)

out 〉
〈κ(1)in 〉

=
1
2
〈|E (12)|〉
〈|E (11)|〉

. (6)

ECS conditions are fulfilled provided γout/in � 1. We notice that γout/in has a rather general valence
in that either of Equations (4) and (5) depends by no means on the specific topology of E (11) and E (12).
Unfortunately, there is no unambiguous way to generalize γout/in to networks with two asymmetric
and/or more than two communities. Such a generalization goes beyond our aims here.

3. Q-Ary Naming Game in the Stochastic Block Model

As a first step we investigate the dynamics of the NG in the Stochastic Block Model (SBM) [39].
In the SBM we consider Q communities with N(i) = N/Q for i = 1, . . . , Q. We introduce a set of
Q(Q + 1)/2 parameters {p(ik)}1...Q

i≤k and we assume p(ik)(x, y) = p(ik) for all i, k. For Q = 2 the SBM
yields asymmetric networks whenever p(11) 6= p(22). Hence, γout/in is in general not well defined.

As mentioned in Section 1, in the original version of the NG [8] agents have empty notebooks at
the beginning of the game, hence they invent names. After a while the number of different competing
names observed across the network peaks at a value which is O(N/2). Then, it decreases. If we
identify the state of an agent with his/her notebook, we see that the number of allowed agent states
(notebooks containing all possible combinations of the competing names) inflates exponentially just in
the initial stage of the dynamics. This makes studying the system rather impractical beyond numerical
simulations. In order to avoid such a complication, we resort to a trick which was first introduced in
ref. [43]: instead of starting the game with empty notebooks, we assign precisely one name to each
agent. As a result the “creative” transient disappears, while the left side of Figure 1 reduces to a single
square, with the speaker choosing randomly a name from his/her notebook and uttering it. Depending
on how many different names we distribute across the network, the trick allows to set the overall
dimension of the state space of the system. In particular, in ref. [43] each agent was randomly assigned
one of two names, respectively represented by letters A and B.
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Since we are interested in community-based networks, we find it preferable to prepare the initial
state of the system with agents in a given community being assigned a common name and with
different communities being assigned different names. We let Ak represent the name initially assigned
to C(k). Then we introduce a Rosetta notebook1 D = {A1, . . . , AQ} and we let S(D) = {D : D ⊂ D}.
At time t ≥ 0 an agent x has a certain notebook D, hence D represents the state of x at time t. We count
the number of agent states |S(D)| in full generality by counting all notebooks D with 1 ≤ |D| ≤ Q
names. There are precisely

• Q notebooks with one name,

• 1
2! Q(Q− 1) notebooks with two names,

• 1
3! Q(Q− 1)(Q− 2) notebooks with three names,

...

• 1
Q! Q(Q− 1)(Q− 2) . . . 1 = 1 notebooks with Q names,

with the factorials at denominator ensuring that the inclusion of states differing by a permutation of
names is avoided in the counting. By adding all the above numbers, we get

|S(D)| =
Q

∑
k=1

1
k!

Q(Q− 1) · · · (Q− k + 1) =
Q

∑
k=1

Q!
k!(Q− k)!

=
Q

∑
k=1

(
Q
k

)
= 2Q − 1 . (7)

We conclude that the number of agent states still increases exponentially with the number of
communities; nevertheless, Equation (7) represents the minimum one must cope with to study
multi-language phases with no substantial restriction.

3.1. Mean Field Equations

MFEs describe correctly the dynamics of the system in the thermodynamic limit (where stochastic
fluctuations become increasingly negligible). In the SBM we define this by letting N → ∞ with
Q = const., N(i)/N = const. and p(ik) = const. for all i, k. To derive MFEs we need to take into account
and correctly weigh all possible agent-agent interactions yielding an increase/decrease of the fraction
of agents in a given state. For each notebook D we introduce local densities

n(i)
D =

no. of agents with notebook D belonging to C(i)

N(i)
. (8)

At each time the vectors {n(i)
D }D∈S(D) fulfill simplex conditions separately for each community, that is

to say state densities are constrained by equations

∑
D∈S(D)

n(i)
D = 1 , i = 1, . . . , Q . (9)

1 Evidently, this name evokes the famous stone rediscovered near the town of Rashid (Rosetta, Egypt) by Napoleon’s army in
1799. The stone contained versions of the same text in Greek, Demotic and Hieroglyphic. As such, it served as a language
translation tool.
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Hence, there is one redundant state per community, whose density we represent in terms of the
remaining ones via the corresponding simplex equation. We are free to choose the Rosetta notebook D
as redundant state for all communities. If we let S̄(D) = S \ D, then we have

n(i)
D = 1− ∑

D∈S̄(D)
n(i)

D , i = 1, . . . , Q . (10)

Following this choice, we introduce the essential state vector

n̄ = {n(i)
D : D ∈ S̄(D) and i = 1, . . . , Q} . (11)

The domain of n̄ is the Cartesian product of Q simplices. Taken as a whole, n̄(t) provides a full
kinematic description of the state of the system at time t. Its trajectory in state space is mathematically
described by a set of stochastic differential equations, governing the dynamics of the system under the
joint action of deterministic drift and random diffusion terms. MFEs follow as the result of switching
off all diffusion terms. They read

dn(i)
D

dt
= f (i)D (n̄) , D ∈ S̄(D) . (12)

The function f (i)D yields the overall transition rate for the agent state D in the ith community. It includes
positive and negative contributions, each corresponding to an interaction involving two neighbouring
agents belonging to C(i) or rather an agent belonging to C(i) and a neighbour lying somewhere else.
We group terms contributing to f (i)D in two different ways, namely

f (i)D = f (i,+)
D − f (i,−)D = f (ii)D +

1...Q

∑
k 6=i

f (ik)D , (13)

where f (i,+)
D collects all positive contributions, f (i,−)D all negative ones and f (ik)D all contributions

involving agents who belong respectively to the ith and kth communities. The first representation
shows that D is a steady state in the ith community provided the balance f (i,+)

D = f (i,−)D is exactly
fulfilled. The second one allows to count easily the number of dimensions of the phase space of the
system. Indeed, f (ik)D is proportional to the probability of picking up an agent x in the ith community
and a neighbour x′ of x in the kth one. This probability amounts to

π(ik) = prob
{

x ∈ C(i), x′ ∈ C(k)
}

=
1
Q

p(ik)

∑Q
`=1 p(i`)

=
1
Q

ν(ik)

1 + ∑1...Q
` 6=i ν(i`)

, (14)

with ν(ik) = p(ik)/p(ii). When we look for a steady solution to Equation (12) we annihilate all
derivatives on the left hand side. Since the denominator of π(ik) is the same for all k with fixed
i, we just factorize all such denominators and leave them out. We thus see that the only parameters
a steady solution depends on are precisely the constants {ν(ik)}i 6=k. Since these are all independent,
we conclude that the phase space of the model has Q(Q− 1) dimensions.

Using the representation f (i)D = f (i,+)
D − f (i,−)D is more convenient for calculational purposes.

All speaker-listener interactions of a given type generate algebraic expressions differing only in the
community indexes carried by {π(ik)}. Such expressions can be easily grouped together. To work out
f (i,±)D , it is advisable to first enumerate its contributions. In full generality we let

f (i,±)D =
N±,D

∑
α=1

f (i,±,α)
D , (15)
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where f (i,±,α)
D includes all interactions of the αth type increasing/decreasing n(i)

D and N±,D denotes

the overall number of interaction types yielding an increase/decrease of n(i)
D . As we just noticed,

each contribution to f (i,±,α)
D is proportional to π(ik) for some k. The proportionality factor yields

the conditional transition rate ∆n(i)
D of an interaction between agents x and x′ given x ∈ C(i) and

x′ ∈ C(k). Only in the specific case of the binary NG, where S(D) = {{A1}, {A2}, {A1, A2}}, can such
conditional rates be simply enumerated and calculated with paper and pencil. Indeed, these have
concise and well known expressions. For the reader’s convenience we report them all in Table 1 (to
keep the notation simple, here as well as in the sequel we allow expressions such as n(i)

A in place of
n(i)
{A}). For Q > 2 the number of contributions increases. For the sake of readability, we refer the reader

to App. A for a complete derivation of MFEs.

Table 1. Conditional transition rates for speaker-listener interactions. Labels S(i) and L(k) denote respectively a
speaker in C(i) and a listener in C(k), i, k = 1, 2.

Before Interaction After Interaction Conditional Transition Rates

S(i)→ L(k) S(i)− L(k) ∆n(i)
A1

∆n(i)
A2

∆n(k)
A1

∆n(k)
A2

A1
A1→ A1 A1 − A1 0 0 0 0

A1
A1→ A2 A1 − A1 A2 0 0 0 −n(i)

A1
n(k)

A2

A1
A1→ A1 A2 A1 − A1 0 0 n(i)

A1
n(k)

A1 A2
0

A2
A2→ A1 A2 − A1 A2 0 0 −n(i)

A2
n(k)

A1
0

A2
A2→ A2 A2 − A2 0 0 0 0

A2
A2→ A1 A2 A2 − A2 0 0 0 n(i)

A2
n(k)

A1 A2

A1 A2
A1→ A1 A1 − A1

1
2 n(i)

A1 A2
n(k)

A1
0 0 0

A1 A2
A1→ A2 A1 A2 − A1 A2 0 0 0 − 1

2 n(i)
A1 A2

n(k)
A2

A1 A2
A1→ A1 A2 A1 − A1

1
2 n(i)

A1 A2
n(k)

A1 A2
0 1

2 n(i)
A1 A2

n(k)
A1 A2

0

A1 A2
A2→ A1 A1 A2 − A1 A2 0 0 − 1

2 n(i)
A1 A2

n(k)
A1

0

A1 A2
A2→ A2 A2 − A2 0 1

2 n(i)
A1 A2

n(k)
A2

0 0

A1 A2
A2→ A1 A2 A2 − A2 0 1

2 n(i)
A1 A2

n(k)
A1 A2

0 1
2 n(i)

A1 A2
n(k)

A1 A2

3.2. Phase Diagram for Q = 2

As explained above, the phase space of the NG in the SBM corresponds to the 1st orthant of the
Q(Q− 1)-dimensional Euclidean space generated by parameters {ν(ik)}1...Q

i 6=k . Recall that we start the
game with initial configuration

n(k)
D (0) =


1 if D = {Ak} ,

0 otherwise ,

k = 1, . . . , Q . (16)

After a while the system reaches an equilibrium state where a certain number of names are left out
in favour of others. Surviving names are found not necessarily only in their original communities,
but also in other ones over which they spread along the dynamics. If n(k)

A`
(t → ∞) ' 1 for ` 6= k,

we say that A` has colonized C(k). Phases correspond to all possible ways names colonize communities.
In principle, their total number is given by

no. of phases =
Q

∑
k=1

(
Q
k

) Q−k

∑
n1 ...nk=0

n1+...+nk=Q−k

(Q− k)!
n1! . . . nk!

=
Q

∑
k=1

(
Q
k

)
kQ−k . (17)
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Indeed, assume that k names survive in the final state. The number of ways to choose them out of a set
of Q names is (Q

k ), which explains the presence of the binomial coefficient in Equation (17). We have to
sum over k = 1, . . . , Q to take into account all possibilities. The k surviving names certainly dominate
their respective communities, so we are left with the task of distributing them across the remaining
Q− k ones. The number of ways to distribute n1 copies of the first name, n2 copies of the second
one and so forth is (Q − k)!/(n1! . . . nk!), with the factorials at denominator removing unwanted
repetitions. The total number of phases is finally obtained by summing over all possible choices of
n1, . . . , nk. The rightmost expression in Equation (17) simply follows from the multinomial theorem.
In Table 2, we report the number of phases for the lowest few values of Q. Each phase occupies a
sharply bounded region in the phase space. As the reader may notice, the phase structure of the model
becomes increasingly complex as Q increases.

Table 2. Number of phases in the Stochastic Block Model (SBM) with Q communities.

Q 2 3 4 5 6 7 8

no. of phases 3 10 41 196 1057 6322 41,393

The only case where the phase diagram can be easily studied is for Q = 2. For notational
simplicity, we introduce symbols ν1 = p(12)/p(11) and ν2 = p(12)/p(22) in place of ν(12) and ν(21)

respectively. Notice that ν1 and ν2 increase when the inter-community links become denser and also
when the intra-community ones rarefy. MFEs can be easily worked out, either thanks to Table 1 or via
the code provided as online supplementary material. They read

dn(1)
A1

dt
= π(11)

{
n(1)

A1
n(1)

A1 A2
+ (n(1)

A1 A2
)2 − n(1)

A1
n(1)

A2

}
+ π(12)

{
3
2

n(1)
A1 A2

n(2)
A1
− 1

2
n(1)

A1
n(2)

A1 A2
+ n(1)

A1 A2
n(2)

A1 A2
− n(1)

A1
n(2)

A2

}
, (18)

dn(1)
A2

dt
= π(11)

{
n(1)

A2
n(1)

A1 A2
+ (n(1)

A1 A2
)2 − n(1)

A1
n(1)

A2

}
+ π(12)

{
3
2

n(1)
A1 A2

n(2)
A2
− 1

2
n(1)

A2
n(2)

A1 A2
+ n(1)

A1 A2
n(2)

A1 A2
− n(1)

A2
n(2)

A1

}
, (19)

dn(2)
A1

dt
= π(22)

{
n(2)

A1
n(2)

A1 A2
+ (n(2)

A1 A2
)2 − n(2)

A1
n(2)

A2

}
+ π(21)

{
3
2

n(2)
A1 A2

n(1)
A1
− 1

2
n(2)

A1
n(1)

A1 A2
+ n(2)

A1 A2
n(1)

A1 A2
− n(2)

A1
n(1)

A2

}
, (20)

dn(2)
A2

dt
= π(22)

{
n(2)

A2
n(2)

A1 A2
+ (n(2)

A1 A2
)2 − n(2)

A1
n(2)

A2

}
+ π(21)

{
3
2

n(2)
A1 A2

n(1)
A2
− 1

2
n(2)

A2
n(1)

A1 A2
+ n(2)

A1 A2
n(1)

A1 A2
− n(2)

A2
n(1)

A1

}
. (21)

The phase diagram of the model, obtained by integrating Equations (18)–(21) numerically,
is reported in Figure 2. We observe three different phases: in region I the system converges to a global
consensus state where A1 colonizes C(2), in region III it converges to the opposite global consensus
state, with A2 colonizing C(1), while region II corresponds to a multi-language phase. Here large
fractions of both communities keep speaking their original language without ever converging to global
consensus. It is interesting to observe that the phase structure of the model is qualitatively similar to
that obtained for the binary NG on a fully connected graph when competing committed groups of
agents are introduced, see Figure 1 of ref. [35]. Nevertheless, the phase structure here is fully induced
by the network topology. Moreover, the cusp of region II, that we shall derive exactly in next section,
is located at ν1 = ν2 = 0.1321 . . ., while in ref. [35] it is located at pA = pB = 0.1623 . . ..



Games 2017, 8, 12 9 of 35

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

ν 1

I: 
co

ns
en

su
s o

n
la

ng
ua

ge
 A

1

III: consensus on
language A2

II: 
mult

i-la
ng

ua
ge

 ph
ase

n
(1)

A1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

I: 
co

ns
en

su
s o

n
la

ng
ua

ge
 A

1

III: consensus on
language A2

II: 
mult

i-la
ng

ua
ge

 ph
ase

n
(1)

A2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ν2

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

ν 1

I: 
co

ns
en

su
s o

n
la

ng
ua

ge
 A

1

III: consensus on
language A2

II: 
mult

i-la
ng

ua
ge

 ph
ase

n
(2)

A1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ν2

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

I: 
co

ns
en

su
s o

n
la

ng
ua

ge
 A

1

III: consensus on
language A2

II: 
mult

i-la
ng

ua
ge

 ph
ase

n
(2)

A2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 2. Phase diagram in the SBM with Q = 2.

4. Binary Dynamics in the Planted Partition Model with Q = 2

The Planted Partition Model (PPM) [40,41] includes all networks of the SBM generated by letting
p(ii) = pin for i = 1, . . . , Q and p(ik) = pout for i 6= k. Networks in the PPM are fully symmetric under
exchange of community indexes. For Q = 2 we have

〈κ(1)in 〉 = 〈κ
(2)
in 〉 =

2
N

N
2

pin

(
N
2
− 1
)
= pin

(
N
2
− 1
)

, (22)

〈κ(12)
out 〉 = 〈κ

(21)
out 〉 =

2
N

N
2

pout
N
2

= pout
N
2

, (23)

hence
γout/in =

pout

pin

1
(1− 2/N)

' pout/pin ≡ ν . (24)

ECS conditions are fulfilled by graphs with ν � 1. In this limit the PPM is in absolute the simplest
ensemble of community-based networks.

For Q = 2 the phase space of the system corresponds to the bisecting line of Figure 2,
where ν1 = ν2 ≡ ν. When the system relaxes to equilibrium, all derivatives on the l.h.s. of
Equations (18)–(21) vanish. Therefore, steady densities are determined by a system of algebraic
equations. We want to show that the latter admit a symmetric solution ñ = {ñ(1)

A1
, ñ(1)

A2
, ñ(2)

A1
, ñ(2)

A2
} with

ñ(1)
A1

= ñ(2)
A2

= x and ñ(1)
A2

= ñ(2)
A1

= y. This turns out to be stable only for ν lying within region II of Figure 2.
When ν lies outside it, the symmetric solution becomes unstable under small density perturbations.
In this region the symmetry is broken by dynamical fluctuations, leading to global consensus on A1

or A2 with equal probability. Depending on how large ν is, instabilities may be triggered by density
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fluctuations occurring along one specific direction or spanning an entire plane in state space, as we
shall see in a while. As a result of our ansatz two of MFEs become redundant, so we are left with

x(1− x− y) + (1− x− y)2 − xy

+ ν

{
3
2

y(1− x− y)− 1
2

x(1− x− y) + (1− x− y)2 − x2
}

= 0 , (25)

y(1− x− y) + (1− x− y)2 − xy

+ ν

{
3
2

x(1− x− y)− 1
2

y(1− x− y) + (1− x− y)2 − y2
}

= 0 , (26)

We let u = x − y and v = 1 − x − y. Adding and subtracting the above two equations yields the
equivalent system{

v(1− v) + 2v2 − 1
2
[(1− v)2 − u2]

}
+ ν

{
v(1− v) + 2v2 − 1

2
[(1− v)2 + u2]

}
= 0 , (27)

uv + ν

{
−3

2
uv− 1

2
uv− u(1− v)

}
= 0 ⇔ u [v− ν(1 + v)] = 0 . (28)

In particular, Equation (28) has two solutions: (i) u = 0 and (ii) u 6= 0, v = ν/(1− ν). These hold
separately for ν belonging to disjoint subintervals of [0, 1]. If we assume first that u 6= 0,
from Equation (27) it follows that

u2 = −2
1 + ν

1− ν

{
v2

2
+ 2v− 1

2

}
. (29)

Inserting v = ν/(1− ν) into this yields

u(ν) = ±
√

1 + ν

(1− ν)3 (4ν2 − 6ν + 1) . (30)

To ensure that u(ν) is real, we must have 0 < ν ≤ ν̂ = (3 −
√

5)/4 = 0.190983 . . . Moreover, from
Equation (29) we see that u = 0 entails v =

√
5− 2 = 0.236068 . . . This represents a solution for ν > ν̂.

Therefore, with initial conditions n(1)
A1

= n(2)
A2

= 1 and n(1)
A2

= n(2)
A1

= 0, the symmetric steady solution is
given by 

ñ(i)
Ai
(ν) =

1
2

{
1− 2ν

1− ν
+

√
(1 + ν)

(1− ν)3 (4ν2 − 6ν + 1)

}
,

ñ(i)
A3−i

(ν) =
1
2

{
1− 2ν

1− ν
−
√

(1 + ν)

(1− ν)3 (4ν2 − 6ν + 1)

}
,

for ν ≤ ν̂ and i = 1, 2 , (31)

and

ñ(1)
A1

(ν) = ñ(1)
A2

(ν) = n(2)
A1

(ν) = ñ(2)
A2

(ν) =
3−
√

5
2

, for ν ≥ ν̂ . (32)

In Figure 3a we plot the symmetric steady densities in C(1) vs. ν. We notice that both ñ(1)
A1

(ν) and ñ(1)
A2

(ν)

have discontinuous first order derivatives for ν = ν̂.
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Figure 3. (a) Symmetric steady solution to MFEs in the PPM with Q = 2; (b) Eigenvalues of linearized MFEs. The
critical point νc is represented by a star.

4.1. Stability of the Symmetric Steady Solution

In order to investigate the stability of the symmetric solution, we consider densities deviating
by a small amount from ñ, i.e., we let n(i)

X = ñ(i)
X + ε

(i)
X for i = 1, 2 and X = A1, A2. Then we

examine the conditions under which all deviations {ε(i)X (t)}i=1,2
X=A1,A2

vanish simultaneously as t → ∞.
By inserting such perturbations into MFEs and by expanding in Taylor series at leading order, we obtain
linearized MFEs

dε
(i)
X

dt
= ∑

Y=A1,A2

∑
k=1,2

ε
(k)
Y

∂ f (i)X

∂n(k)
Y

(ñ) , i = 1, 2 and X = A1, A2 . (33)

The stability matrix Λ(i,X)
(k,Y) = ∂ f (i)X /∂n(k)

Y (ñ) has constant elements, depending on the components of ñ

and the relative connectedness ν (but not on {ε(i)X }). In particular, we find

σΛ(1,A1)
(1,A1)

= −1− 3
2

ν +
ν

2
ñ(2)

A2
, σΛ(1,A1)

(1,A2)
= −2− ν− ν

2
ñ(2)

A1
+ 2ñ(1)

A2
+ νñ(2)

A2
, (34)

σΛ(1,A1)
(2,A1)

=
1
2

ν− ν

2
ñ(1)

A2
, σΛ(1,A1)

(2,A2)
= −ν +

ν

2
ñ(1)

A1
+ νñ(1)

A2
(35)

σΛ(1,A2)
(1,A1)

= −2− ν− ν

2
ñ(2)

A2
+ 2ñ(1)

A1
+ νñ(2)

A1
, σΛ(1,A2)

(1,A2)
= −1− 3

2
ν +

ν

2
ñ(2)

A1
(36)

σΛ(1,A2)
(2,A1)

= −ν +
ν

2
ñ(1)

A2
+ νñ(1)

A1
, σΛ(1,A2)

(2,A2)
=

ν

2
− ν

2
ñ(1)

A1
, (37)

σΛ(2,A1)
(1,A1)

=
ν

2
− ν

2
ñ(2)

A2
, σΛ(2,A1)

(1,A2)
= −ν +

ν

2
ñ(2)

A1
+ νñ(2)

A2
, (38)

σΛ(2,A1)
(2,A1)

= −1− 3
2

ν +
ν

2
ñ(1)

A2
, σΛ(2,A1)

(2,A2)
= −2− ν− ν

2
ñ(1)

A1
+ 2ñ(2)

A2
+ νñ(1)

A2
, (39)

σΛ(2,A2)
(1,A1)

= −ν +
ν

2
ñ(2)

A2
+ νñ(2)

A1
, σΛ(2,A2)

(1,A2)
=

ν

2
− ν

2
ñ(2)

A1
, (40)

σΛ(2,A2)
(2,A1)

= −2− ν− ν

2
ñ(1)

A2
+ 2ñ(2)

A1
+ νñ(1)

A1
, σΛ(2,A2)

(2,A2)
= −1− 3

2
ν +

ν

2
ñ(1)

A1
, (41)
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with σ = 2(1+ ν). It is possible to work out the four eigenvalues of Λ exactly, either by paper-and-pencil
calculations or via a simple MapleTM script. Rather exceptionally, their algebraic expressions are
sufficiently concise to allow us to report them in full. Indeed, we have

λ1 =
1
4

3ν2 − 2 +
√

ν4 − 20ν3 + 8ν2 + 28ν

1− ν2 , (42)

λ2 =
1
4

ν2 − ν− 2 +
√

17ν4 − 26ν3 − 15ν2 + 28ν

1− ν2 , (43)

λ3 =
1
4

3ν2 − 2−
√

ν4 − 20ν3 + 8ν2 + 28ν

1− ν2 , (44)

λ4 =
1
4

ν2 − ν− 2−
√

17ν4 − 26ν3 − 15ν2 + 28ν

1− ν2 . (45)

The behaviour of these eigenvalues as functions of ν is reported in Figure 3b. For sufficiently small ν all
of them are negative, thus granting that the symmetric steady solution is stable. In fact, the transition
to the multi-language phase occurs when the eigenvalue λ1 shifts from negative to positive values [44].
The critical point γout/in, c = νc, in correspondence of which we have λ1 = 0, can be calculated exactly.
The equation λ1(ν) = 0 is indeed equivalent to a quartic equation for ν with four real simple roots.
Among these two are negative and one is larger than one. The fourth root, that we just identify with νc,
is given by

νc =

√
19
2

sin

[
−1

3
arctan

(
2

√
2694
99

)
+

π

3

]
−
√

57
6

sin

[
1
3

arctan

(
2

√
2694
99

)
+

π

6

]
− 1

2

= 0.132122756 . . . (46)

Actually, among all network models that we consider in the present paper, the PPM is the only one
where a calculation of the critical connectedness can be performed analytically to the very end.

The eigenvector v1 of Λ corresponding to λ1 becomes a direction of instability for the symmetric
steady solution for ν > νc. In other words, the projection of the perturbation vector along v1 diverges
asymptotically. From Figure 3b we observe that also λ2 shifts to positive values at some point. In
particular, it can be shown that λ2 = 0 for ν = ν̂. Therefore, as anticipated, the eigenvector v2 of Λ
corresponding to λ2 represents a second direction of instability for ν > ν̂.

4.2. Numerical Integration of Mean Field Equations

It is worthwhile discussing at this point the integration of MFEs. We can take advantage of the
analytic solution presented above to fix the details of our numerical recipe, so as to be confident that
numerical integration yields correct results when applied to network models for which no analytic
solution is available (for instance the SBM with Q = 2 and ν1 6= ν2, discussed in Section 3). First of all, we
notice that for ν1 = ν2 = ν Equations (18)–(21) are symmetric under the exchange n(1)

A1
↔ n(2)

A2
, n(1)

A2
↔ n(2)

A1
.

Since the initial state densities, Equation (16), are symmetric too and no dynamical fluctuations are
encoded in MFEs, nothing can break the exchange symmetry, hence numerical solutions always
converge to symmetric steady densities.
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To let the system fall into global consensus, we have two possibilities. One is to break the exchange
symmetry explicitly in the initial conditions. For instance, we can introduce a contamination of A2

within C(1) by letting

n(1)
A1

(0) = 1− ε , n(2)
A1

(0) = 0 ,

n(1)
A2

(0) = ε , n(2)
A2

(0) = 1 ,
(47)

with 0 < ε � 1. For ν > νc such a perturbation makes the system converge with certainty to
global consensus on A2. However, the contamination affects the results of numerical integration.
More specifically, it modifies the duration of metastable states, thus changing the value of the critical
connectedness by terms O(ε). To get rid of this effect, we must integrate numerically MFEs for a
sequence of decreasing values of ε and then extrapolate to ε→ 0+.

Albeit legitimate, the above approach has the drawback that symmetry breaking is implicit in
the initial conditions, while MFEs are kept fully symmetric. An opposite possibility is to leave initial
conditions unchanged and assume that C(1) and C(2) have different size. For instance, we can let
N(2) = (1 + ε)N(1) for 0 < ε � 1, so that C(2) is slightly larger than C(1) (for ν > νc the system is then
expected to converge to global consensus on A2). This assumption modifies the coefficients {π(ik)}.
Indeed, the probability of picking up an agent belonging to C(1) is now N(1)/N = (1/2)(1− ε/2) +O(ε2),
while the probability of picking up one belonging to C(2) is N(2)/N = (1/2)(1 + ε/2) + O(ε2). Therefore,
the exchange symmetry is explicitly broken in MFEs. As previously, numerical estimates of the critical
connectedness are biased by terms O(ε), hence we must extrapolate results to ε → 0+. All in all,
the above two approaches for breaking the exchange symmetry are equivalent.

Apart from this issue, we discretize MFEs according to the Euler method [45] with step size
dt = 0.1. In Figure 4a we show examples of numerical integrations for a handful of values of ν. The plot
has been obtained with asymmetric initial conditions corresponding to ε = 1.0× 10−4. As anticipated,
we observe the presence of metastable states followed by collapse to global consensus. These states
have a finite duration depending on ν. In particular, we see from the plot that the closer ν to νc, the
longer metastable states persist, until for ν < νc they become truly stable. In Figure 4b we plot the time
to consensus Tcons as a function of ν. The collapse of metastable states to global consensus takes a finite
time ∆t. Therefore, we need to define Tcons operatively by setting a threshold. Throughout the paper
we define Tcons as the lowest value of t for which n(1)

A1
(t) < 1.0× 10−4. This introduces a systematic error,

which is however negligible to all purposes, since ∆t/Tcons → 0 as ν → νc. The dependence of Tcons

upon ν is well described by the function

Tcons(ν, ε) =


A(ε)

[ν− νc(ε)]γ(ε)
if ν > νc

+∞ otherwise .

(48)

with νc(ε) and γ(ε) converging as ε → 0+. In Table 3 we report estimates of the parameters A, νc, γ,
obtained upon fitting data produced by numerical integrations to Equation (48). In particular,
the critical exponent γ(ε) converges to γ(0+) ' 0.96 (for a definition of critical exponents see ref. [46]),
while νc(ε) converges to the exact value, Equation (46).
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Figure 4. (a) Numerical integration of mean field equations (MFEs) in the Planted Partition Model (PPM); (b) Time
to consensus vs. ν for several values of the symmetry breaking parameter ε.

Table 3. Estimates of fit parameters for Tcons(ν, ε).

ε A(ε) νc(ε) γ(ε)

1.0× 10−2 8.214(1) 0.1321161(2) 0.74205(3)
1.0× 10−3 6.537(1) 0.1321222(2) 0.86468(3)
1.0× 10−4 6.920(1) 0.1321227(2) 0.90872(3)
1.0× 10−5 7.729(1) 0.1321228(2) 0.93087(3)
1.0× 10−6 8.523(1) 0.1321228(2) 0.94602(3)
1.0× 10−7 9.730(1) 0.1321229(2) 0.95210(3)
1.0× 10−8 10.790(1) 0.1321229(2) 0.95840(3)

In Figure 5a we show the equilibrium densities n(1)
Ak

(∞) as obtained from numerical integration of
MFEs with asymmetric initial conditions corresponding to ε = 1.0× 10−4. They are in perfect agreement
with the symmetric steady solution derived in Section 4.1 for ν < νc. We conclude that our numerical
recipe introduces no relevant systematic error in the calculation.
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Figure 5. (a) Equilibrium densities in C(1) with initial conditions as in Equation (47); (b) Bounded time to consensus
from simulations in the PPM with Q = 2.

4.3. Finite Size Effects

So far we studied the model in the mean field approximation. This is known to work well
only in the thermodynamic limit. In Monte Carlo simulations networks are necessarily made
of a finite number of agents. Moreover, due to computational limitations this number is never
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exceedingly large. The main effect induced by the finiteness of the network is a blurring of the phase
transition. The critical connectedness νc disappears on small networks together with the multi-language
phase. The coexistence of different local languages within communities becomes a purely metastable
phenomenon, independently of ν. Dynamical fluctuations of state densities are always able to trigger a
collapse to global consensus after a finite time since the game start. Of course, the lower ν the longer the
system persists in the metastable phase. To quantify this, we average O(100) independent Monte Carlo
measures of the time to consensus for several choices of N and ν. In particular, we let p(11) = p(22) = 1 in
all our numerical tests, hence the communities that we simulate are actually cliques. Since measuring
time to consensus becomes increasingly costly as ν decreases, we need to set up a threshold beyond
which the stochastic dynamics is forcedly arrested. We introduce the bounded time to consensus

T̃cons(N, ν) = min {Tcons(N, ν), 100 N} . (49)

In Figure 5b we show the behaviour of T̃cons in a range of ν around the critical point νc for
N = 1000, 2000, 4000. We observe that T̃cons is essentially the same for all values of N if ν � νc.
As ν approaches νc from above T̃cons begins to rise and the increase is steeper for larger values of N.
Finally, we see that T̃cons keeps finite for ν < νc even though it takes soon large values as ν decreases.
In principle it is possible to reproduce the observed curves thanks to a numerical technique that allows
to build quasi-stationary solutions of the Master Equation for stochastic processes with absorbing
states [47,48]. Although this technique has been applied to the NG in other contexts [34,49] with very
good results, its use here goes beyond our aims. We conclude by noting that in the crossover region, i.e.,
in the range of ν across which T̃cons(N, ν) rises from O(100) to the upper bound 100 · N, the behaviour of
T̃cons(N, ν) is well described by the function

T̃cons(N, ν) ∝ exp
{

N(νc − ν)β
}

, (50)

with β ' 1.5, in analogy with the findings of ref. [34].

5. Binary Naming Game on Two Overlapping Cliques

In order to investigate how the coexistence of multi-language states in the NG is affected by
the presence of agents belonging simultaneously to different communities, we consider a graph
G = C(1) ∪ C(2) made of two partially overlapping cliques, having size N(1) = N(2) = N/2. We recall
that C(k) is a clique provided p(kk)(x, y) = 1 for all x, y ∈ C(k) and x 6= y. We split C(1) and C(2) into two
disjoint groups of nodes respectively, i.e., we let

C(1) = C(1)in ∪ C
(1)
ov , C(2) = C(2)in ∪ C

(2)
ov , (51)

with C(i)in and C(i)ov fulfilling

(i) (x, y) /∈ E for all x ∈ C(1)in and for all y ∈ C(2) ,

(ii) (x, y) /∈ E for all x ∈ C(2)in and for all y ∈ C(1) ,

(iii) (x, y) ∈ E for all x ∈ C(1)ov and for all y ∈ C(2) ,

(iv) (x, y) ∈ E for all x ∈ C(2)ov and for all y ∈ C(1) .
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We also assume |C(1)in | = |C
(2)
in | = Nin and |C(1)ov | = |C

(2)
ov | = Nov/2. Therefore, we have N = 2Nin + Nov.

It will be noticed that these networks have no stochastic elements2. An example corresponding to
N = 600 and Nov = 60 is reported in Figure 6. The connectedness parameters are given by

〈κ(1)in 〉 = 〈κ
(2)
in 〉 =

2
N

N
2

(
N
2
− 1
)
=

N
2
− 1 , (52)

〈κ(12)
out 〉 = 〈κ

(21)
out 〉 =

2
N

Nov

2
N
2

=
Nov

2
, (53)

hence
γout/in =

Nov

N
1

1− 2/N
' Nov

N
=

Nov

2Nin + Nov
=

ω

2 + ω
, (54)

with ω = Nov/Nin. ECS conditions are fulfilled provided ω � 1.

Figure 6. A network with two overlapping cliques, N = 600 and Nov = 60.

It is possible to study the binary NG on such networks with the same approach used for the
PPM. However, we first need to clarify how the overlap contributes to shaping MFEs. So far we
considered communities as groups of dynamically homogeneous agents. Accordingly, we identified
the state densities n(i)

D , introduced in Equation (8), as fundamental degrees of freedom of the system.
When agents belonging to more than one community are present and they are likewise connected to all
of these, assigning such agents to one community or another becomes ambiguous, hence it is advisable
to treat them separately. Indeed, in our case we can distinguish precisely three groups of dynamically
homogeneous agents, namely C(1)in , C(2)in and Cov = C(1)ov ∪ C

(2)
ov . Correspondingly, it makes sense to define

state densities

n(i)
D =

no. of agents with notebook D belonging to C(i)in
Nin

, for i = 1, 2 , and D ∈ S̄(D) , (55)

n(o)
D =

no. of agents with notebook D belonging to Cov

Nov
, for D ∈ S̄(D) . (56)

Possible agent-agent interactions and corresponding conditional rates are still those listed in Table 1,
but the probabilities of picking up an agent x and a neighbour x′ of x belonging to combinations of the
above groups must be specified over again. In particular, here we let

π(ii) = prob
{

x ∈ C(i)in , x′ ∈ C(i)in

}
=

1
(1 + ω)(2 + ω)

, (57)

π(io) = prob
{

x ∈ C(i)in , x′ ∈ Cov

}
=

ω

(1 + ω)(2 + ω)
, (58)

π(oi) = prob
{

x ∈ Cov, x′ ∈ C(i)in

}
=

ω

(2 + ω)2 , (59)

π(oo) = prob
{

x ∈ Cov, x′ ∈ Cov
}
=

ω2

(2 + ω)2 , (60)

2 With little effort we could consider generalizations where edges exist with probabilities p(kk)(x, y) < 1 for x, y ∈ C(k) and/or
|C(1)

ov | 6= |C
(2)
ov |. We prefer to restrict our study to symmetric cliques, as we wish to investigate how the overlap affects the

multi-language phase of the NG in a simple set-up with no additional degree of freedom.
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and we notice that ω = π(1o)/π(11) = π(2o)/π(22) = π(oo)/π(o1) = π(oo)/π(o2). The above probabilities
include all possible pairings, indeed they fulfill

π(11) + π(1o) + π(22) + π(2o) + π(oo) + π(o1) + π(o2) = 1 . (61)

From the above definitions we easily recognize that the system is governed by MFEs

dn(1)
A1

dt
= π(11)

{
n(1)

A1
n(1)

A1 A2
+ (n(1)

A1 A2
)2 − n(1)

A1
n(1)

A2

}
+ π(1o)

{
3
2

n(1)
A1 A2

n(o)
A1
− 1

2
n(1)

A1
n(o)

A1 A2
+ n(1)

A1 A2
n(o)

A1 A2
− n(1)

A1
n(o)

A2

}
, (62)

dn(1)
A2

dt
= π(11)

{
n(1)

A2
n(1)

A1 A2
+ (n(1)

A1 A2
)2 − n(1)

A1
n(1)

A2

}
+ π(1o)

{
3
2

n(1)
A1 A2

n(o)
A2
− 1

2
n(1)

A2
n(o)

A1 A2
+ n(1)

A1 A2
n(o)

A1 A2
− n(1)

A2
n(o)

A1

}
, (63)

dn(2)
A1

dt
= π(22)

{
n(2)

A1
n(2)

A1 A2
+ (n(2)

A1 A2
)2 − n(2)

A1
n(2)

A2

}
+ π(2o)

{
3
2

n(2)
A1 A2

n(o)
A1
− 1

2
n(2)

A1
n(o)

A1 A2
+ n(2)

A1 A2
n(o)

A1 A2
− n(2)

A1
n(o)

A2

}
, (64)

dn(2)
A2

dt
= π(22)

{
n(2)

A2
n(2)

A1 A2
+ (n(2)

A1 A2
)2 − n(2)

A1
n(2)

A2

}
+ π(2o)

{
3
2

n(2)
A1 A2

n(o)
A2
− 1

2
n(2)

A2
n(o)

A1 A2
+ n(2)

A1 A2
n(o)

A1 A2
− n(2)

A2
n(o)

A1

}
, (65)

dn(o)
A1

dt
= π(oo)

{
n(o)

A1
n(o)

A1 A2
+ (n(o)

A1 A2
)2 − n(o)

A1
n(o)

A2

}
+ π(o1)

{
3
2

n(o)
A1 A2

n(1)
A1
− 1

2
n(o)

A1
n(1)

AB + n(o)
A1 A2

n(1)
AB − n(o)

A1
n(1)

A2

}
+ π(o2)

{
3
2

n(o)
A1 A2

n(2)
A1
− 1

2
n(o)

A1
n(2)

AB + n(o)
A1 A2

n(2)
AB − n(o)

A1
n(2)

A2

}
, (66)

dn(o)
A2

dt
= π(oo)

{
n(o)

A2
n(o)

A1 A2
+ (n(o)

A1 A2
)2 − n(o)

A1
n(o)

A2

}
+ π(o1)

{
3
2

n(o)
A1 A2

n(1)
A2
− 1

2
n(o)

A2
n(1)

A1 A2
+ n(o)

A1 A2
n(1)

A1 A2
− n(o)

A2
n(1)

A1

}
+ π(o2)

{
3
2

n(o)
A1 A2

n(2)
A2
− 1

2
n(o)

A2
n(2)

A1 A2
+ n(o)

A1 A2
n(2)

A1 A2
− n(o)

A2
n(2)

A1

}
, (67)

In analogy with Section 4, we can show that these admit a symmetric steady solution ñ = {ñ(1)
A1

, ñ(1)
A2

, ñ(2)
A1

,

n(2)
A2

, ñ(o)
A1

, ñ(o)
A2
} with ñ(1)

A1
= ñ(2)

A2
= x, ñ(1)

A2
= ñ(2)

A1
= y and ñ(o)

A1
= ñ(o)

A2
= z. Moreover, here too there exists a finite

critical threshold ωc, such that the symmetric steady solution is stable for ω < ωc and unstable for ω > ωc.
In particular, if the game starts with initial conditions

n(1)
A1

(0) = 1− ε , n(2)
A1

(0) = 0 , n(o)
A1

= 1/2 ,

n(1)
A2

(0) = ε , n(2)
A2

(0) = 1 , n(o)
A2

= 1/2 ,
(68)

we find that for ω < ωc the system relaxes to a stable symmetric equilibrium with A1 and A2 prevailing
respectively in C(1) and C(2), while for ω > ωc the system converges to global consensus on A2, due to the
symmetry breaking induced by dynamical fluctuations.
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Now, as a consequence of the exchange symmetry of our ansatz the unknown density values x, y, z

are fully determined by algebraic equations
x(1− x− y) + (1− x− y)2 − xy

+ ω

{
3
2
(1− x− y)z− 1

2
x(1− 2z) + (1− x− y)(1− 2z)− xz

}
= 0 , (69)

y(1− x− y) + (1− x− y)2 − xy

+ ω

{
3
2
(1− x− y)z− 1

2
y(1− 2z) + (1− x− y)(1− 2z)− yz

}
= 0 , (70)

ω(z2 − 3z + 1) +
{

3
2
(x + y)(1− 2z)− z(1− x− y) + 2(1− x− y)(1− 2z)− (x + y)z

}
= 0 . (71)

Again we let u = x− y and v = 1− x− y. Then we observe that adding and subtracting Equations (69)
and (70) yields the equivalent system

v(1− v) + 2v2 − 1
2
[(1− v)2 − u2] + ω

{
3vz− 1

2
(1− v)(1− 2z) + 2v(1− 2z)− (1− v)z

}
= 0 , (72)

uv + ω

{
−1

2
u(1− 2z)− uz

}
= uv− 1

2
ωu = 0 , (73)

ω(z2 − 3z + 1) +
{

3
2
(1− v)(1− 2z)− zv + 2v(1− 2z)− (1− v)z

}
. (74)

Equation (73) has solutions: (i) u = 0 and (ii) u 6= 0, v = ω/2. Similar to what we found in Section 4, these
hold within disjoint intervals of ω. We focus first on the second solution. Specifically, since Equation (74)
depends on v but not on u, inserting v = ω/2 into it yields immediately an equation for z alone, namely

z2 −
(

7
2
+

4
ω

)
z +

5
4
+

3
2ω

= 0 . (75)

This has positive solution

z(ω) =
7
4
+

2
ω
− 1

4

√
29ω2 + 88ω + 64

ω
. (76)

Despite the presence of inverse powers of ω, z(ω) keeps always finite, as can be seen by expanding the
square root on the right hand side in Taylor series. Indeed we have limω→0+ z(ω) = 3/8. By inserting
the values just determined for v(ω) and z(ω) into Equation (72), we get

u(ω) = ±
√

1 + ω−ω2 − 1
4

ωΩ . (77)

with Ω =
√

29ω2 + 88ω + 64. In order for u(ω) to be real, it must be 0 ≤ ω ≤ ω̂ = 2
√

5− 4 = 0.472136 . . ..
More precisely, it can be shown that the equation u(ω) = 0 is equivalent to a quartic equation in ω

with four real simple roots. Among these, only ω̂ is positive. For ω > ω̂, i.e., for u = 0, Equation (76)
holds no more. In this region the unknowns v and z are jointly determined by Equations (72) and (74).
These admit constant solutions, i.e., not depending on ω. Indeed, z and v are separately determined by
z2− 3z+ 1 = 0 and v(1− v)+ 2v2− (1− v)2/2 = 0, yielding respectively z = (3−

√
5)/2 and v = 1/(2+

√
5).

With some algebra we find that the symmetric steady solution, corresponding to initial conditions as
specified in Equation (68) with ε = 0, is given by


ñ(i)

Ai
(ω) =

1
2

{
1 +

√
1 + ω−ω2 − ω

4
Ω− ω

2

}
,

ñ(i)
A3−i

(ω) =
1
2

{
1−

√
1 + ω−ω2 − ω

4
Ω− ω

2

}
,

ñ(o)
Ai

(ω) =
7
4
+

2
ω
− 1

4
Ω
ω

,

for ω ≤ ω̂ and i = 1, 2 , (78)
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and

ñ(i)
Ak
(ω) =

3−
√

5
2

, for ω > ω̂ , i = 1, 2, o and k = 1, 2 . (79)

In Figure 7a we plot the symmetric steady densities in C(1)in and Cov vs. ω. Results for n(i)
Ak

, i, k = 1, 2 are

qualitatively similar to those reported in Figure 3. Also in this case we see that both ñ(1)
A1

(ω), ñ(1)
A2

(ω)

and ñ(o)
Ak

have discontinuous first order derivatives for ω = ω̂.
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(i

)

A
k

(a)
i=1, k=1
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k=4

k=5
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Figure 7. (a) Symmetric steady solution to MFEs on a network with two overlapping cliques; (b) Eigenvalues of
the linearized MFEs. The critical point ωc is denoted by a star.

5.1. Stability of the Symmetric Steady Solution

The existence of a critical threshold ωc above which the symmetric steady solution ñ becomes
unstable is again revealed by a stability analysis similar to that performed in Section 4.1. The algebra
is just a bit harder here. In particular, although the game rules are unchanged and the network
is still made of two interacting communities, the state space of the system is now larger: we have
six coupled equations in six unknown variables. As a result, the stability matrix has 6× 6 entries
Λ(i,X)
(k,Y) = ∂ f (i)X /∂n(k)

Y (ñ) corresponding to i, k = 1, 2, o and X, Y = A1, A2. The lack of a direct interaction

between agents belonging to C(1)in and C(2)in makes some of these matrix elements vanish. Concretely,
we find

ρ1Λ(1,A1)
(1,A1)

= −1− 3
2

ω +
ω

2
ñ(o)

A2
, ρ1Λ(1,A1)

(1,A2)
= −2−ω− ω

2
ñ(o)

A1
+ 2ñ(1)

A2
+ ωñ(o)

A2
, (80)

ρ1Λ(1,A1)
(2,A1)

= 0 , ρ1Λ(1,A1)
(2,A2)

= 0 , (81)

ρ1Λ(1,A1)
(o,A1)

=
1
2

ω− ω

2
ñ(1)

A2
, ρ1Λ(1,A1)

(o,A2)
= −ω +

ω

2
ñ(1)

A1
+ ωñ(1)

A2
, (82)

ρ1Λ(1,A2)
(1,A1)

= −2−ω− ω

2
ñ(o)

A2
+ 2ñ(1)

A1
+ ωñ(o)

A1
, ρ1Λ(1,A2)

(1,A2)
= −1− 3

2
ω +

ω

2
ñ(o)

A1
(83)

ρ1Λ(1,A2)
(2,A1)

= 0 , ρ1Λ(1,A2)
(2,A2)

= 0 , (84)

ρ1Λ(1,A2)
(o,A1)

= −ω +
ω

2
ñ(1)

A2
+ ωñ(1)

A1
, ρ1Λ(1,A2)

(o,A2)
=

ω

2
− ω

2
ñ(1)

A1
, (85)

ρ1Λ(2,A1)
(1,A1)

= 0 , ρ1Λ(2,A1)
(1,A2)

= 0 , (86)

ρ1Λ(2,A1)
(2,A1)

= −1− 3
2

ω +
ω

2
ñ(o)

A2
, ρ1Λ(2,A1)

(2,A2)
= −2−ω− ω

2
ñ(o)

A1
+ 2ñ(2)

A2
+ ωñ(o)

A2
, (87)

ρ1Λ(2,A1)
(o,A1)

=
1
2

ω− ω

2
ñ(2)

A2
, ρ1Λ(2,A1)

(o,A2)
= −ω +

ω

2
ñ(2)

A1
+ ωñ(2)

A2
, (88)

ρ1Λ(2,A2)
(1,A1)

= 0 , ρ1Λ(2,A2)
(1,A2)

= 0 , (89)
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ρ1Λ(2,A2)
(2,A1)

= −2−ω− ω

2
ñ(o)

A2
+ 2ñ(2)

A1
+ ωñ(o)

A1
, ρ1Λ(2,A2)

(2,A2)
= −1− 3

2
ω +

ω

2
ñ(o)

A1
(90)

ρ1Λ(2,A2)
(o,A1)

= −ω +
ω

2
ñ(2)

A2
+ ωñ(2)

A1
, ρ1Λ(2,A2)

(o,A2)
=

ω

2
− ω

2
ñ(2)

A1
, (91)

ρ2Λ(o,A1)
(1,A1)

=
1
2
− 1

2
ñ(o)

A2
, ρ2Λ(o,A1)

(1,A2)
= −1 +

1
2

ñ(o)
A1

+ ñ(o)
A2

, (92)

ρ2Λ(o,A1)
(2,A1)

=
1
2
− 1

2
ñ(o)

A2
, ρ2Λ(o,A1)

(2,A2)
= −1 +

1
2

ñ(o)
A1

+ ñ(o)
A2

, (93)

ρ2Λ(o,A1)
(o,A1)

= −3−ω +
1
2
[ñ(1)

A2
+ ñ(2)

A2
] , ρ2Λ(o,A1)

(o,A2)
= −2− 2ω− 1

2
[ñ(1)

A1
+ ñ(2)

A1
]

+ [ñ(1)
A2

+ ñ(2)
A2

] + 2ωñ(o)
A2

, (94)

ρ2Λ(o,A2)
(1,A1)

= −1 + ñ(o)
A1

+
1
2

ñ(o)
A2

, ρ2Λ(o,A2)
(1,A2)

=
1
2
− 1

2
ñ(o)

A1
, (95)

ρ2Λ(o,A2)
(2,A1)

= −1 + ñ(o)
A1

+
1
2

ñ(o)
A2

, ρ2Λ(o,A2)
(2,A2)

=
1
2
− 1

2
ñ(o)

A1
, (96)

ρ2Λ(o,A2)
(o,A1)

= −2− 2ω− 1
2
[ñ(1)

A2
+ ñ(2)

A2
] ρ2Λ(o,A2)

(o,A2)
= −3−ω +

1
2
[ñ(1)

A1
+ ñ(2)

A1
] ,

+ [ñ(1)
A1

+ ñ(2)
A1

] + 2ωñ(o)
A1

, (97)

with ρ1 = (1 + ω)(2 + ω) = 1/π(11) = 1/π(22) and ρ2 = ω−1(2 + ω)2 = 1/π(o1) = 1/π(o2). In order to
calculate the eigenvalues {λk}6

k=1 of Λ we need to solve the secular equation det(Λ− λ1) = 0. With the
components of ñ depending on ω either explicitly (in the form of direct and inverse powers of the latter)
and implicitly via Ω, the secular determinant turns out to be a polynomial of sixth degree in λ with
rational coefficient functions in ω and Ω. Luckily, the determinant factorizes into cubic polynomials,
i.e., we have

det(Λ− λ1) =
p1(λ)p2(λ)

64(1 + ω)4(2 + ω)8 , (98)

with

p1(λ) = [128 + 512 ω + 832 ω2 + 704 ω3 + 328 ω4 + 80 ω5 + 8 ω6]λ3

+ [80 ω + 200 ω2 + 180 ω3 + 70 ω4 + 10 ω5 + (16 + 56 ω + 84 ω2 + 66 ω3 + 26 ω4 + 4 ω5)Ω]λ2

+ [32 + 64 ω + 24 ω2 + 10 ω3 + 15 ω4 + 5 ω5 + (−8 ω + 10 ω3 + 4 ω4)Ω + (2 ω + 3 ω2 + ω3)Ω2]λ

+ 4 ω Ω + 4 ω2 Ω− 4 ω3Ω−ω2Ω2 , (99)

and

p2(λ) = [128 + 512 ω + 832 ω2 + 704 ω3 + 328 ω4 + 80 ω5 + 8 ω6]λ3

+ [240 ω + 760 ω2 + 940 ω3 + 570 ω4 + 170 ω5 + 20 ω6 − (16 + 24 ω − 12 ω2 − 38 ω3 − 22 ω4 − 4 ω5 )Ω]λ2

+ [32 + 128 ω + 300 ω2 + 384 ω3 + 213 ω4 + 41 ω5 + (4 ω + 2 ω2 − 8 ω3 − 4 ω4 )Ω

− (2 ω + 3 ω2 + ω3)Ω2]λ− (8 ω + 52 ω2 + 56 ω3 + 16 ω4)− (8 ω + 5 ω2 − 2 ω3 )Ω + (ω + ω2)Ω2 . (100)

Therefore, the eigenvalues of Λ are simply given by the roots of p1 and p2 separately. The behaviour of
the eigenvalues as functions of ω is shown in Figure 7b. All eigenvalues are negative for sufficiently
small ω, hence ñ represents here a stable multi-language steady state. At some point as ω increases
(precisely for ω = ωc), λ1 shifts from negative to positive values, thus determining a sudden change of
phase, with the system converging to global consensus in a finite time. For an even larger value of ω

(more precisely for ω = ω̂), also λ2 shifts to positive values. It is possible to find analytic expressions
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for all the eigenvalues of Λ. Below we report only λ1, since this is related to the critical threshold ωc.
We have

λ1 =
1

12(1 + ω)(2 + ω)2

a +
(1 + ω)2(2 + ω)2

(
3(2 + ω)

√
b + c

)2/3
+ d

(1 + ω)2(2 + ω)2
(

3(2 + ω)
√

b + c
)1/3

 , (101)

with the coefficient functions a, b, c, d being given respectively by

a = −30 ω− 35 ω2 − 10 ω3 − 2 Ω + ω Ω + 2 ω2 Ω , (102)

b = 196608 + 2162688 ω + 10736640 ω2 + 28446720 ω3 + 42713856 ω4 + 32143872 ω5

− 5234928 ω6 − 36468864 ω7 − 28560744 ω8 + 127224 ω9 + 10823661 ω10 + 4106838 ω11

− 808959 ω12 − 755556 ω13 − 120300 ω14 − 129024 ω Ω− 2365440 ω2 Ω− 9703680 ω3Ω

− 16942464 ω4Ω− 13454016 ω5Ω− 531888 ω6Ω + 9250152 ω7Ω + 8316420 ω8Ω + 2124942 ω9Ω

− 796212 ω10Ω− 426270 ω11Ω + 16944 ω12Ω + 21720 ω13Ω− 3072 Ω2 − 165888 ωΩ2

− 440064 ω2Ω2 + 521856 ω3Ω2 + 2961120 ω4Ω2 + 3698208 ω5Ω2 + 1102452 ω6Ω2 − 1830852 ω7Ω2

− 2180301 ω8Ω2 − 849546 ω9Ω2 − 15249 ω10Ω2 + 66012 ω11Ω2 + 11148 ω12Ω2 + 14592 ω Ω3

+ 64896 ω2Ω3 − 12672 ω3Ω3 − 326976 ω4Ω3 − 447696 ω5Ω3 − 83904 ω6Ω3 + 307404 ω7Ω3

+ 309864 ω8Ω3 + 116052 ω9Ω3 + 13392 ω10Ω3 − 816 ω11Ω3 + 1920 ω Ω4 + 8976 ω2Ω4

+ 25824 ω3Ω4 + 42912 ω4Ω4 + 28200 ω5Ω4 − 16689 ω6Ω4 − 42798 ω7Ω4 − 30489 ω8Ω4

− 9468 ω9Ω4 − 1044 ω10Ω4 − 192 ω Ω5 − 912 ω2Ω5 − 1848 ω3Ω5 − 1380 ω4Ω5 + 1278 ω5Ω5

+ 3612 ω6Ω5 + 3210 ω7Ω5 + 1344 ω8Ω5 + 216 ω9Ω5 − 12 ω2Ω6 − 60 ω3Ω6 − 135 ω4Ω6

− 174 ω5Ω6 − 135 ω6Ω6 − 60 ω7Ω6 − 12 ω8Ω6 , (103)

c = 5184 ω + 15264 ω2 + 23760 ω3 + 30960 ω4 + 18540 ω5 − 7838 ω6 − 15393 ω7 − 6810 ω8

− 1000 ω9 + 576 Ω− 1440 ω Ω− 9720 ω2 Ω− 13968 ω3Ω− 7278 ω4Ω + 2904 ω5Ω + 6483 ω6Ω

+ 3402 ω7Ω + 600 ω8Ω + 144 ω Ω2 + 696 ω2Ω2 + 660 ω3Ω2 − 288 ω4Ω2 − 867 ω5Ω2 − 558 ω6Ω2

− 120 ω7Ω2 − 24 ω Ω3 − 18 ω2Ω3 + 22 ω3Ω3 + 45 ω4Ω3 + 30 ω5Ω3 + 8 ω6Ω3 − 8 Ω3 , (104)

and

d = −768− 5376 ω− 15312 ω2 − 22752 ω3 − 16760 ω4 − 440 ω5 + 10835 ω6 + 10180 ω7 + 4571 ω8

+ 1054 ω9 + 100 ω10 + 384 ω Ω + 1424 ω2 Ω + 1656 ω3Ω− 308 ω4Ω− 2614 ω5Ω− 2792 ω6Ω

− 1438 ω7Ω− 376 ω8Ω− 40 ω9Ω + 16 Ω280 ω Ω2 + 192 ω2Ω2 + 300 ω3Ω2 + 331 ω4Ω2 + 252 ω5Ω2

+ 123 ω6Ω2 + 34 ω7Ω2 + 4 ω8Ω2 . (105)

Due to the complex algebraic structure of λ1 it is not possible to solve the equation λ1(ω) = 0 exactly.
We find numerically ωc = 0.26065807 . . . and accordingly γout/in, c = ωc/(2 + ωc) = 0.1153019 . . .

A comparison with the results of Section 4 shows that the critical connectedness on the network
with two overlapping cliques is rather close to that observed in the PPM. This leads us to conclude
that, with reference to the stochastic dynamics of the NG, few agents with many links to more than
one community make a tie comparable with many agents who tightly belong to a single community
and have sparse links to the other.

5.2. Finite Size Effects

In Figure 8 we show the behaviour of the bounded time to consensus T̃cons(N, ω) as a function
of ω, as obtained from Monte Carlo simulations on finite networks with N = 1000, 2000, 4000 (the exit
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threshold is set to 100 · N, like in Equation (49)). Similar to Figure 5b, also in this case T̃cons is seen to
increase as ω decreases and, in perfect analogy, the rise is steeper in correspondence of larger values of
N. The main (and only) difference is that the appearance of long-lasting metastable states occurs here
for values of ω which are about twice the values of ν observed therein, in accordance with ωc ' 2νc.
This confirms the validity of the analysis we made in the previous pages.
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102

103

104
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Figure 8. Bounded time to consensus from simulations on a network with two overlapping cliques.

We conclude this section by commenting that since long-lasting multi-language metastable
states are observed in a finite volume only for γout/in below its critical threshold, having
γout/in(νc) ' γout/in(ωc) yields a qualitative indication that the NG, when used as a community detection
algorithm on empirical networks, is equivalently robust (in the language of ref. [31] we would say that
it has an equivalent resolution) in finding overlapping or non-overlapping communities, γout/in being
the same. This result represents the main lesson we learn from the algebraic exercises of Section 4 and
the present one.

6. Dependence of νc upon Q in the Planted Partition Model

As seen in Section 3, the Q-ary NG in the SBM develops an exponentially large number of phases
as Q increases. As a result, studying the the phase diagram becomes soon unfeasible. Permutational
symmetry certainly helps reduce the complexity of the problem, however the boundary surface
of single phases is anyway expected to depend on Q to some degree. Moreover, phase diagrams
corresponding to different values of Q live in Euclidean spaces with different dimensions, hence direct
comparisons are—strictly speaking—ill-defined. In spite of this, something about the phase structure of
the model can be said. For all Q > 2 the phase diagram is bounded by coordinate planes delimiting the
1st orthant of the [Q(Q− 1)]-dimensional Euclidean space. We recall that for i 6= k the (ν(ik), ν(ki))-plane
is just the set of points with coordinates {ν(`,m) = 0}(`,m) 6=(i,k),(k,i). Such points correspond physically
to networks where all communities but the ith and kth ones are disconnected. Therefore, on the
coordinate planes we fall back into the case Q = 2. We conclude that the geometric structure of the
phase diagram, at the boundaries of its domain, is precisely that of Figure 2.

More difficult is to establish the structure of phases in the bulk of the phase diagram. For instance,
we know from Figure 2 that for Q = 2 the cusp of region II represents the point with maximum
Euclidean distance from the origin, for which the system does not converge to global consensus.
The formalism developed in Section 3 and App. A allows us to show that for Q > 2 the NG in the PPM
is equally characterized by a critical threshold νc(Q). The reader may wonder whether it is true as well
that in the SBM for Q > 2 the point ν(12) = ν(21) = ν(13) = . . . = νc(Q) is that with maximum Euclidean
distance from the origin, for which language coexistence is observed. We shall see in a while that the
answer is negative. In fact, νc(Q) turns out to be a monotonically decreasing function of Q.
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For Q > 2 the dynamics of the NG in the PPM is still described by Equation (12) with all
ν(ik) = ν = pout/pin. Owing to the large number of degrees of freedom, we are unable to work out the
symmetric steady state of the system exactly, as we did in Section 4. Since |S̄(D)| = 2Q − 2, the overall
number of unknowns (or equivalently coupled equations) amounts to Q(2Q − 2), e.g., for Q = 6 we
have 372 coupled equations. The algebraic complexity of the transition rates { f (i)D } increases with Q,
too. For these reasons, we can only study the system numerically. Since in the PPM communities have
all the same connectedness, either each of them keeps speaking its original language forever or the
system goes to global consensus, with one single name colonizing the whole network. In order to let
the system reach global consensus, we introduce an asymmetric perturbation ε in Equation (16) that
favours A1, namely we integrate MFEs with initial conditions


n(1)

A1
= 1 ,

n(1)
D = 0 for D 6= A1 ,

and



n(k)
Ak

= 1− ε ,

n(k)
A1

= ε ,

n(k)
D = 0 for D 6= A1, Ak ,

for k 6= 1 . (106)

In Figure 9, we show the behaviour of Tcons as a function of ν for Q = 3, . . . , 6 and for several values
of ε. Numerical integration becomes demanding for Q & 5, which is why the rise of Tcons in the plot at
bottom right (corresponding to Q = 6) is cut off. A glance to the four plots reveals that νc(Q) decreases
as Q increases. The dependence of Tcons upon ν is still well described by Equation (48). In Table 4 we
report estimates of the parameters A, νc, γ, obtained from fits to the theoretical model. Interestingly, the
critical exponent γ(0+) appears to be independent of Q (actually, for Q = 5, 6 we observe numerical
instabilities in the fits due to a variety of factors, including round-off errors arising in numerical
integration of MFEs and a gradual enhancement of the systematic error associated to the finiteness of
∆t/Tcons as Q increases, see Section 4).
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Figure 9. Time to consensus in the PPM with Q > 2.
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Table 4. Estimates of fit parameters for Tcons(ν, ε) for Q > 2.

Q = 3 Q = 4

ε A(ε) νc(ε) γ(ε) A(ε) νc(ε) γ(ε)

1.0× 10−2 8.524(2) 0.100257(4) 0.8162(2) 22.72(4) 0.088284(6) 0.6902(1)
1.0× 10−3 8.348(3) 0.100252(4) 0.8871(2) 18.35(5) 0.088345(6) 0.8128(2)
1.0× 10−4 9.894(4) 0.100249(4) 0.9100(3) 17.72(5) 0.088357(6) 0.8733(2)
1.0× 10−5 11.56(4) 0.100247(4) 0.9233(3) 19.06(5) 0.088360(6) 0.9032(3)
1.0× 10−6 12.34(5) 0.100245(4) 0.9409(4) 20.59(6) 0.088361(6) 0.9235(4)
1.0× 10−7 14.08(5) 0.100244(4) 0.9462(4) 22.55(6) 0.088361(6) 0.9366(4)

Q = 5 Q = 6

ε A(ε) νc(ε) γ(ε) A(ε) νc(ε) γ(ε)

1.0× 10−2 52.1(3) 0.08027(2) 0.6028(3) 93.6(4) 0.0681(4) 0.5519(1)
1.0× 10−3 52.3(4) 0.08066(2) 0.7045(8) 75.4(4) 0.0689(4) 0.7258(1)
1.0× 10−4 44.5(4) 0.08070(2) 0.804(8) 68.0(4) 0.0690(4) 0.8254(1)
1.0× 10−5 34.3(5) 0.08067(2) 0.92(2) 72.9(4) 0.0690(4) 0.8710(1)
1.0× 10−6 22.5(7) 0.08064(2) 1.03(6) 77.3(4) 0.0690(4) 0.9045(1)

In Figure 10a we plot νc(Q) vs. 1/Q. We observe an approximately linear behaviour,
distorted however by a mild modulation in correspondence of the largest values of Q. This makes
it difficult to extrapolate νc(Q) for Q → ∞ (we leave this as an open problem). The scaling law
νc(Q) ·Q ' const. looks pretty natural in consideration that communities are equally connected to each
other in the PPM: since the overall number of inter-community links connecting one community to the
rest of the network increases proportionally to Q− 1 for fixed ν, the critical connectedness is expected
to decrease correspondingly. The absence of anomalous scaling, such as νc(Q) ·Qα ' const. with α > 1,
is a signal of robustness of multi-language phases against variations of Q. The observed scaling and
our previous considerations about the boundaries of the phase diagram suggest as well that the joint
union of all multi-language phases in the SBM is reverse convex on a large scale, i.e., it is progressively
squeezed towards the origin of the phase space as we approach the “bisecting” line {ν(ik) = ν}i 6=k.
However, this picture needs further investigation to be confirmed or disproved.

To conclude, in Figure 10b we show the behaviour of T̃cons as a function of ν for Q = 3, as obtained
from Monte Carlo simulations. We chose N such that communities have the same size as in Figure 5
(which corresponds to Q = 2). The plot shows that the crossover region lies in a range of ν that is
shifted to the left with respect to Figure 5, in agreement with the predictions of mean field theory.
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Figure 10. (a) Dependence of νc upon the number Q of communities; (b) Bounded time to consensus from
simulations in the PPM with Q = 3.
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7. Effects Induced by a Change of the Relative Size of Communities

Another important aspect of the problem is the way and the extent to which a change in the
relative size of communities affects locally and/or globally the geometric structure of the phase
diagram. For instance, consider the SBM and let σ be (a piece of) some critical surface separating two
phases. For fixed N, σ moves across the phase space as N(1), . . . , N(Q) are modified continuously under
the constraint N(1) + . . .+ N(Q) = N. The question is whether and how σ shifts, rotates, contracts and/or
expands as a function of {N(k)}. The problem depends on Q− 1 continuous variables, thus answering
in full generality is not easy.

To keep the theoretical framework as simple as possible, we assume Q = 2. In this case, we have
only one additional parameter. More precisely, we let N(2) = (1 + ε)N(1). We assume ε > 0, hence C(1)

is smaller than C(2). We also let ν1 = p(12)/p(11) and ν2 = p(12)/p(22), as we also did in Section 3. Since
the network is no more symmetric under exchange of community indexes, γout/in is not well defined.
The dynamics of the binary NG is still ruled by Equations (18)–(21), but the probabilities of picking up
an agent x and a neighbour x′ of x in one community or the other are now given by

π(11) = prob
{

x ∈ C(1), x′ ∈ C(1)
}
=

1
2 + ε

1
1 + ν1(1 + ε)

, (107)

π(12) = prob
{

x ∈ C(1), x′ ∈ C(2)
}
=

1
2 + ε

ν1(1 + ε)

1 + ν1(1 + ε)
, (108)

π(21) = prob
{

x ∈ C(2), x′ ∈ C(1)
}
=

1 + ε

2 + ε

ν2
1 + ε + ν2

, (109)

π(22) = prob
{

x ∈ C(2), x′ ∈ C(2)
}
=

1 + ε

2 + ε

1 + ε

1 + ε + ν2
. (110)

The above probabilities correctly fulfill π(11) + π(12) + π(21) + π(22) = 1. Since the exchange symmetry is
explicitly broken, steady solutions to MFEs are inevitably asymmetric. As such, they are also harder
to work out than for ε = 0. Accordingly, we solve MFEs by numerical integration. In Figure 11 we
show phase diagrams corresponding to ε = 0.1, 0.5, 1.0. We see that region II is progressively squeezed
downwards, while it simultaneously expands rightwards, as ε increases. If we approximate region II
by a rectangle with sides at ν1 = ν1,c and ν2 = ν2,c, then Figure 11 suggests that ν1,c · N(2) ' const. and
ν2,c · N(1) ' const. For instance, for ε = 1 we have N(2) = 2N(1) and we find ν1,c ' 0.055, which is about
half the value found for ε = 0. The above scaling laws look pretty natural in consideration that agents
in C(1) have a number of neighbours in C(2) increasing proportionally to N(2) for fixed ν1 and the other
way round. Hence, ν1,c (ν2,c) is expected to decrease as N(2) (N(1)) increases. The absence of anomalous
scaling, such as ν1,c · (N(2))α ' const. or ν2,c · (N(1))α ' const. with α > 1, is a signal of robustness of
multi-language phases against variations of the relative size of communities.
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Figure 11. Phase diagram of the NG in the Stochastic Block Model (SBM) with Q = 2 and N(2) = (1 + ε)N(1) for
ε = 0.1, 0.5, 1.0.
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8. Dependence of γout/in, c upon the Topology of {E(ik)}

It is well known that realistic networks are heterogeneous (node degrees display high variability).
Networks typically result from growth processes where new nodes join progressively those already in
place. As a result, their topology cannot be described by static functions such as p(ik)(x, y). In order
to examine how the critical point of the multi-language phase depends on the internal topology
of communities and their interconnections, we study a network model with two interacting BA
communities. Specifically, we fix N and consider first two disjoint BA subgraphs GBA(N(k), m0, m) [50],
each made of N(k) = N/2 nodes, with m0 and m denoting respectively the number of initial nodes of
each subgraph and the number of links each new node establishes, based on preferential attachment,
when it joins the subgraph. In particular, we let m0 = m = 5 in our numerical simulations. Then,
we consider three possible definitions of E (12), all relying on one parameter ρ:

E (12)
ER : we statically connect nodes belonging to different communities with probability

pout(N) = 4mρ/N;
E (12)

SF1 : starting with no inter-community links, we alternately choose at random a node belonging to
one community and connect it to a target node belonging to the other one. The target node is
chosen using a variant of preferential attachment where only inter-community links are taken
into account when defining the target-node degree distribution. We stop the growth process
as soon as |E (12)

SF1 | = mρN. We end up with E (12)
SF1 having a scale-free topology. Moreover, there is

no inter-community assortativity, i.e., nodes with high inner degree in one community do not
tend to attach preferably to nodes with high inner degree in the other one;

E (12)
SF2 : we generate inter-community links similar to E (12)

SF1 , the only difference being that, concerning
preferential attachment, both intra- and inter-community links are now taken into account
when defining the target-node degree distribution. Again, E (12)

SF2 develops a scale-free topology.
Yet, there is inter-community assortativity in this case.

The connectedness parameters are given by

〈κ(1)in 〉 = 〈κ
(2)
in 〉 =

2
N

N
2

2m = 2m , (111)

〈κ(12)
out 〉ER = 〈κ(21)

out 〉ER =
2
N

N
2

pout(N)
N
2

= 2mρ , (112)

〈κ(12)
out 〉SF1 = 〈κ(21)

out 〉SF1 = 〈κ(12)
out 〉SF2 = 〈κ(21)

out 〉SF2 =
2
N

N
2

2
N
|E (12)| = 2mρ , (113)

hence
γout/in, ER = γout/in, SF1 = γout/in, SF2 = ρ (114)

Examples of networks with N = 600, inter-community links generated according to E (12)
SF1 or E (12)

SF2 and
ρ = 0.1 are reported in Figure 12.

(a) (b)

Figure 12. (a) BA communities interconnected by scale-free links (no inter-community assortativity); (b) BA
communities interconnected by scale-free links (with inter-community assortativity). In both cases, N = 600,
ρ = 0.1, the size of each node is proportional to its overall degree and the spatial position of nodes represents the
equilibrium configuration of the Force Atlas visualization algorithm [51].

The main assumption underlying mean field theory is that agents are all equivalent. When links
are heterogeneously distributed, this assumption is violated. In such a case, agents with many
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neighbours may (or may not) turn out to be more influential than agents with few ones, depending on
the microscopic dynamics of the system. When this happens, MFEs lose predictive accuracy.
Historically, the problem arose first in the context of epidemic spreading and was solved by
Pastor-Satorras and Vespignani with the introduction of heterogeneous mean field theory [52,53].
Here, agents with different degrees are treated separately. By analogy, the dynamics of the NG on
heterogeneous community-based networks is expected to be accurately described by equations

dn(i)
D,κ

dt
= f (i)D,κ(n̄) , with n(i)

D,κ =
no. of agents with degree κ and notebook D belonging to C(i)

N(i)
. (115)

State densities {n(i)
D,κ} represent a refinement of {n(i)

D } in that they fulfill n(i)
D = ∑κ n(i)

D,κ. As such, they
also fulfill finer simplex conditions ∑κ ∑D n(i)

D,κ = 1 for i = 1, . . . , Q. The mathematical structure of f (i)D,κ is
similar to that of f (i)D in standard MFEs, the only difference being that each term contributing to f (i)D,κ

is proportional to the probability π
(ik)
κκ2 of picking up an agent x with degree κ in C(i) and a neighbour

x′ of x with degree κ2 in C(k) for some k, κ2. Since agents can have arbitrarily large degrees in the
thermodynamic limit, the number of heterogeneous MFEs is virtually infinite. In view of this, it seems
reasonable to impose an upper cut-off κmax to the agent degree. Numerical solutions are then expected
to converge as κmax → ∞.

We leave for future research the precise computation of the critical connectedness γout/in, c on
heterogeneous networks via Equation (115). Instead, we present here results obtained from numerical
simulations. In particular, in Figure 13 we show the behaviour of the bounded time to consensus T̃cons

as a function of ρ for the network models introduced above. Although plots are qualitatively similar,
the crossover region depends rather significantly on the topology of E (12). In this range of ρ we can fit
data to the curve described by Equation (50), with νc replaced by ρc. We report our estimates of ρc and
β in Table 5. Pairwise comparisons suggest the following considerations.

• The network model with E (12)
ER differs from the PPM only in the internal structure of communities.

A comparison of γout/in,c in these models suggests that BA communities yield a more efficient
opinion spread than ER ones. We know from ref. [14] that Tcons ∝ N1.4 for both BA and ER networks
(with no community structure). This is not in contradiction with our finding, which concerns
indeed the effectiveness by which fluctuations break consensus within communities.

• A comparison of ρc in the network models with E (12)
ER and E (12)

SF1 suggests that BA communities yield
a more efficient opinion spread when interacting via random than via scale-free links, provided the
latter have no correlation with the internal degree distribution. In other words, the effectiveness
by which fluctuations break local consensus is largely reduced when intra- and inter-community
links are heterogeneously distributed with no correlation to each other.

• A comparison of ρc in the network models with E (12)
SF1 and E (12)

SF2 shows that inter-community
assortativity allows to restore the effectiveness by which fluctuations break local consensus.
Indeed, γout/in,SF2,c is very close to the critical connectedness observed in the PPM.

Table 5. Estimates of fit parameters for T̃cons.

E(12)
ER E(12)

SF1 E(12)
SF2

ρc 0.087(1) 0.187(5) 0.127(4)

β 1.45(5) 1.50(9) 1.62(8)

In the end the variability of γout/in, c is not dramatic. A glance to all network models we considered
so far shows that, whenever γout/in is well defined, its critical value lies always in the range 0.1÷ 0.2.
Although it is not possible to parameterize the dependence of ρc upon the topological structure of E (ik)

in a simple way, such limited variation of ρc is a clear signal of robustness of multi-language phases
under variations of the network topology.
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Figure 13. Bounded time to consensus from simulations in M5.

9. Conclusions

We studied the phase structure of the Naming Game (NG) on community-based networks.
Prior to this paper it was known in the literature that communities of agents playing the NG tend to
develop own long-lasting languages when sufficiently isolated. We showed that on infinitely extended
networks the latter become everlasting. In other words, communities induce genuine multi-language
phases in the thermodynamic limit. Our interest in studying these was both theoretical and practical.
On the theoretical side, the NG is a non-trivial agent-based model—designed to investigate the
emergence of spoken languages in human societies—whose phase structure is fully determined by the
topology of the underlying network. On the practical side, the NG is an algorithm that, within limits,
allows to detect communities in a given network. Either way, a first-principle analysis of which aspects
of communities are more relevant or critical in order to guarantee the stability of local languages
was lacking.

It should be clear that studying the phase structure of the NG on community-based networks is an
ill-posed problem because the concept of community is not strictly defined by itself [25]. ECS conditions,
introduced in Section 2, define a huge ensemble of networks for which no universal parameterization
exists. Hence, the phase diagram of the system cannot be simply explored by varying a fistful of
parameters. To bypass this difficulty we considered several distinct network models. Each of them was
meant to highlight the dependence of multi-language phases upon specific features of communities.
We studied the phase diagram in the stochastic block model to have a clear picture of how an increase in
the fraction of links connecting communities triggers a sharp transition from local to global consensus.
In connection with this, we derived exactly the cusp of the multi-language phase (region II of Figure 2)
to show that in at least a simple case it is possible to get full insight into the phase transition. Then,
we studied the NG on a network with two overlapping cliques to understand whether connectedness
is more or less efficient than overlap in order to spread languages across communities. We finally
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examined the dependence of critical thresholds upon topological properties of the network, such as the
number and relative size of communities or the structure of intra-/inter-community links, to investigate
whether the model displays anomalous scaling somewhere in the phase space.

The overall picture emerging from our study is that multi-language phases in the NG display
a high degree of robustness against changes in the network topology. The characteristic scale
of the connectedness parameter γout/in (Section 2), at which metastable equilibria become stable,
lies at γout/in,c∼ 0.1–0.2, depending on specific features of the underlying network model. Such large
values provide a full theoretical justification for using the NG as a community detection algorithm,
in accordance with the original proposal of ref. [18] and the analysis performed in ref. [26].
Connectedness and overlap seem to contribute to a similar degree to break local equilibria and
make the system converge to global consensus. The phase diagram appears to scale trivially under
variations of the relative size of communities. Although the geometric structure of multi-language
phases becomes increasingly complex as the number of communities Q increases, at least the critical
point corresponding to networks with fully symmetric communities displays a natural scaling with Q.
Finally, the critical threshold γout/in,c on two-community symmetric networks shows a mild dependence
upon the topology of the intra-/inter-community links.

The phase structure induced by communities in the stochastic block model is remarkably similar to
that induced by competing committed groups of agents on the fully connected graph [35]. The analytic
structure of mean field equations is different in one case and the other, yet their solutions bear a strong
resemblance. The rationale behind such similarity is not known.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2073-4336/
8/1/12/s1.
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Appendix A. Derivation of MFEs in the SBM

In order to work out the functions f (i,±)D for Q > 2, we need to introduce some additional notation.

Definition 1. Given k, n ≥ 1, and D = {Ai1 , . . . , Ain} we let

θk ◦ D =


{Ai1 , . . . , Aik−1

, Aik+1
, . . . , Ain} if k ≤ n ,

D otherwise .
(A1)

In other words, the operator θk removes the kth name from a notebook. We also let

ρk ◦ D = Aik
, for k ≤ n , (A2)

i.e., the operator ρk extracts the kth name out of a notebook. We finally let

ΣA(D) = {D ∈ S(D) : A ∈ D} , (A3)

that is to say ΣA is the set of all notebooks containing the name A.

We find it convenient to work out f (i)D separately for notebooks with |D| = 1 (single-name
notebooks) and |D| > 1 (multi-name notebooks). Indeed, if the initial conditions are chosen as in
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Equation (16), densities n(i)
D with |D| = 1 can increase throughout the game only owing to agent–agent

interactions where a certain multi-name notebook collapses to D, whereas densities n(i)
D with |D| > 1

can increase only when an agent adds a name to his/her notebook thus attaining D. We start from
the latter.
Case I : |D| > 1. In order to let n(i)

D increase, the only possibility is that a listener belonging to the ith
community has initially a notebook differing from D by the lack of one name and a speaker belonging
to any community has a notebook containing that name. Therefore, we let N+,D = 1 for |D| > 1.
The contribution to MFEs is given by

f (i,+,1)
D (n̄) =

|D|

∑
`=1

∑
D̃∈Σρ`◦D(D)

1
|D̃|

[
π(ii)n(i)

D̃
+

1...Q

∑
k 6=i

π(ik)n(k)
D̃

]
n(i)

θ`◦D . (A4)

The factor of 1/|D̃| represents the probability that the speaker chooses the name ρ` ◦ D among those in
his/her notebook.

In order to let n(i)
D decrease, a listener or a speaker in the ith community must have initially

notebook D and must modify it when interacting with another agent. The latter must have a notebook
sharing at least one name with D. Qualitatively, these are two different types of transitions, therefore we
let N−,D = 2 for |D| > 1.

• Type-I transitions lowering n(i)
D for |D| > 1

The listener belongs to the ith community and the speaker belongs to any community. The listener
has initially notebook D, while the speaker has a notebook which has a non–vanishing overlap with D.
The contribution to MFEs is given by

f (i,−,1)
D (n̄) =

|D|

∑
`=1

∑
D̃∈Σρ`◦D(D)

1
|D̃|

[
π(ii)n(i)

D̃
+

1...Q

∑
k 6=i

π(ik)n(k)
D̃

]
n(i)

D . (A5)

The factor of 1/|D̃| represents again the probability that the speaker chooses the name ρ` ◦ D among
those in his/her notebook.

• Type-II transitions lowering n(i)
D for |D| > 1

The speaker belongs to the ith community and the listener belongs to any community. The speaker has
initially notebook D, while the listener has a notebook which has a non–vanishing overlap with D. The
contribution to MFEs is given by

f (i,−,2)
D (n̄) =

|D|

∑
`=1

∑
D̃∈Σρ`◦D(D)

1
|D|

[
π(ii)n(i)

D̃
+

1...Q

∑
k 6=i

π(ik)n(k)
D̃

]
n(i)

D , (A6)

where the factor of 1/|D| represents once more the probability that the speaker chooses the name ρ` ◦D
among those in his/her notebook.
Case II : |D| = 1. In this case D = {A`} for some ` = 1, . . . , Q. As mentioned above, n(i)

A`
can increase only

because a listener or a speaker in the ith community has initially a multi–name notebook containing A`,
which collapses to D = {A`} when he/she interacts with another agent belonging to any community.
The latter too must have initially a notebook containing A`. There are three different types of transitions,
thus we let N+,A`

= 3.

• Type-I transitions increasing n(i)
A`
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The listener belongs to the ith community and the speaker belongs to any community. The speaker
has notebook D = {A`}, while the listener has any multi–name notebook DL ∈ ΣA`

(D) with |DL| > 1
(otherwise the interaction leaves the system unchanged!). The contribution to MFEs is given by

f (i,+,1)
A`

(n̄) = ∑
DL∈ΣA`

(D)

|DL|>1

[
π(ii)n(i)

A`
+

1...Q

∑
k 6=i

π(ik)n(k)
A`

]
n(i)

DL
. (A7)

• Type-II transitions increasing n(i)
A`

The speaker belongs to the ith community and the listener belongs to any community. The listener
has notebook D = {A`}, while the speaker has any multi–name notebook DS ∈ ΣA`

(D) with |DS| > 1
(otherwise the interaction leaves again the system unchanged!). The contribution to MFEs is given by

f (i,+,2)
A`

(n̄) = ∑
DS∈ΣA`

(D)

|DS|>1

1
|DS|

[
π(ii)n(i)

A`
+

1...Q

∑
k 6=i

π(ik)n(k)
A`

]
n(i)

DS
, (A8)

where the factor of 1/|DS| represents the probability that the speaker chooses the name A` among those
in his/her notebook.

• Type-III transitions increasing n(i)
A`

The speaker belongs to the ith community and the listener belongs to any community or the other
way round. The speaker has a notebook DS ∈ ΣAk (D) with |DS| > 1 and the listener has a notebook
DL ∈ ΣAk (D) with |DL| > 1. The contribution of this type of interaction to MFEs is given by

f (i,+,3)
A`

(n̄) = ∑
DS,DL∈ΣA`

(D)

|DS|,|DL|>1

1
|DS|

[
2π(ii)n(i)

DS
n(i)

DL
+

1...Q

∑
k 6=i

π(ik)
(

n(i)
DS

n(k)
DL

+ n(k)
DS

n(i)
DL

)]
, (A9)

where the factor of 1/|DS| represents the probability that the speaker chooses the name A` among
those in his/her notebook and the factor of 2 takes into account that n(i)

A`
increases by 2 fractional units

following the transition if both speaker and listener belong to the ith community.
We finally discuss transitions lowering n(i)

A`
. For this to happen it is necessary that an agent

belonging to the ith community, who has initially notebook D = {A`}, switches to a multi-name
notebook. This is possible only provided the agent adds a second name to his/her notebook and this
can occur only if the agent is a listener. The speaker’s notebook might either contain A` or not and we
must take care of properly counting the probability of not choosing A` in the former case, otherwise
we fall back into Case I/Type-II. Therefore, we find it better to work out separately the two types of
transitions and correspondingly we let N−,A`

= 2.

• Type-I transitions lowering n(i)
A`

The listener belongs to the ith community and the speaker belongs to any community. The listener
has notebook D = {A`} and the speaker has a notebook DS ∈ ΣA`

(D) with |DS| > 1. The contribution to
MFEs is given by

f (i,−,1)
A`

(n̄) = ∑
DS∈ΣA`

(D)
|DS|>1

|DS| − 1
|DS|

[
π(ii)n(i)

DS
+

1...Q

∑
k 6=i

π(ik)n(k)
DS

]
n(i)

A`
, (A10)

where the factor of |DS|−1
|DS| represents the probability that the speaker chooses a name different from A`

among those in his/her notebook.

• Type-II transitions lowering n(i)
A`
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The listener belongs to the ith community and the speaker belongs to any community. The listener
has notebook D = {A`} and the speaker has a notebook DS ∈ [ΣAk (D)]c, where [D]c = S(D) \ D denotes
generically the complement of D in S(D). The contribution to MFEs is given by

f (i,−,2)
A`

(n̄) = ∑
DS∈[ΣA`

(D)]c
n(i)

A`

[
π(ii)n(i)

DS
+

1...Q

∑
k 6=i

π(ik)n(k)
DS

]
, (A11)

where no probability coefficient is needed in front of the product of densities, such as in all previous
cases, since here the speaker can choose equivalently any name among those in his/her notebook.

When the above sums are expanded, lengthy and tedious algebraic expressions are generated,
even for the case Q = 3. To enable interested readers to write down complete MFEs, we provide
as online supplementary material an essential and correctly working MapleTM code for the PPM
(it generates MFEs for Q = 6, as set at line 3). The code can be easily generalized to the SBM, while its
output can be easily adapted for numerical analysis.

We apply in Section 6 the formalism here presented.
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