Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/130591
Authors: 
Schmid, Timo
Bruckschen, Fabian
Salvati, Nicola
Zbiranski, Till
Year of Publication: 
2016
Series/Report no.: 
Discussion Paper, School of Business & Economics: Economics 2016/9
Abstract: 
Modern systems of official statistics require the accurate and timely estimation of socio-demographic indicators for disaggregated geographical regions. Traditional data collection methods such as censuses or household surveys impose great financial and organizational burdens for National Statistical Institutes. The rise of new information and communication technologies offers promising sources to mitigate these shortcomings. In this paper we propose a unified approach for National Statistical Institutes based on small area estimation that allows for the estimation of socio-demographic indicators by using mobile phone data. In particular, the methodology is applied to mobile phone data from Senegal for deriving sub-national estimates of the share of illiterates disaggregated by gender. The estimates are used to identify hot spots of illiterates with a need for additional infrastructure or policy adjustments. Although the paper focuses on literacy as a particular socio-demographic indicator, the proposed approach is applicable to indicators from national statistics in general.
Subjects: 
indicators
model-based estimation
official statistics
small area estimation
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.