Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/130591
Autoren: 
Schmid, Timo
Bruckschen, Fabian
Salvati, Nicola
Zbiranski, Till
Datum: 
2016
Schriftenreihe/Nr.: 
Diskussionsbeiträge No. 2016/9
Zusammenfassung: 
Modern systems of official statistics require the accurate and timely estimation of socio-demographic indicators for disaggregated geographical regions. Traditional data collection methods such as censuses or household surveys impose great financial and organizational burdens for National Statistical Institutes. The rise of new information and communication technologies offers promising sources to mitigate these shortcomings. In this paper we propose a unified approach for National Statistical Institutes based on small area estimation that allows for the estimation of socio-demographic indicators by using mobile phone data. In particular, the methodology is applied to mobile phone data from Senegal for deriving sub-national estimates of the share of illiterates disaggregated by gender. The estimates are used to identify hot spots of illiterates with a need for additional infrastructure or policy adjustments. Although the paper focuses on literacy as a particular socio-demographic indicator, the proposed approach is applicable to indicators from national statistics in general.
Schlagwörter: 
indicators
model-based estimation
official statistics
small area estimation
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
4.17 MB





Publikationen in EconStor sind urheberrechtlich geschützt.