Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/102614
Authors: 
McCloskey, Adam
Perron, Pierre
Year of Publication: 
2012
Series/Report no.: 
Working Paper, Brown University, Department of Economics 2012-15
Abstract: 
We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample size-dependent and, in some cases, data-dependent trimmings which discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long/shortmemory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the tradeoffs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short or very weak long-memory processes contaminated by level shifts or deterministic trends.
Subjects: 
long-memory processes
semiparametric estimators
level shifts
structural change
deterministic trends
JEL: 
C22
C13
C14
Document Type: 
Working Paper

Files in This Item:
File
Size
602.16 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.