Please use this identifier to cite or link to this item:
Chen, Wei James
Liu, Shu-yu
Chen, Chih-han
Lee, Yi-shan
Year of Publication: 
[Journal:] Games [ISSN:] 2073-4336 [Publisher:] MDPI [Place:] Basel [Volume:] 2 [Year:] 2011 [Issue:] 1 [Pages:] 187-199
This paper describes the 'Bounded Memory, Inertia, Sampling and Weighting' (BI-SAW) model, which won the Entry Prediction Competition in 2010. The BI-SAW model refines the I-SAW Model (Erev et al. [1]) by adding the assumption of limited memory span. In particular, we assume when players draw a small sample to weight against the average payoff of all past experience, they can only recall 6 trials of past experience. On the other hand, we keep all other key features of the I-SAW model: (1) Reliance on a small sample of past experiences, (2) Strong inertia and recency effects, and (3) Surprise triggers change. We estimate this model using the first set of experimental results run by the competition organizers, and use it to predict results of a second set of similar experiments later ran by the organizers. We find significant improvement in out-of-sample predictability (against the I-SAW model) in terms of smaller mean normalized MSD, and such result is robust to resampling the predicted game set and reversing the role of the sets of experimental results. Our model's performance is the best among all the participants.
market entry game
prediction competition
Persistent Identifier of the first edition: 
Creative Commons License:
Document Type: 
Appears in Collections:

Files in This Item:
163.99 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.