Please use this identifier to cite or link to this item:
Hillier, Grant
Kan, Raymond
Wang, Xiaolu
Year of Publication: 
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP07/08
The top-order zonal polynomials Ck(A),and top-order invariant polynomials Ck1,...,kr(A1,...,Ar)in which each of the partitions of ki,i = 1,..., r,has only one part, occur frequently in multivariate distribution theory, and econometrics - see, for example Phillips (1980, 1984, 1985, 1986), Hillier (1985, 2001), Hillier and Satchell (1986), and Smith (1989, 1993). However, even with the recursive algorithms of Ruben (1962) and Chikuse (1987), numerical evaluation of these invariant polynomials is extremely time consuming. As a result, the value of invariant polynomials has been largely confined to analytic work on distribution theory. In this paper we present new, very much more efficient, algorithms for computing both the top-order zonal and invariant polynomials. These results should make the theoretical results involving these functions much more valuable for direct practical study. We demonstrate the value of our results by providing fast and accurate algorithms for computing the moments of a ratio of quadratic forms in normal random variables.
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
382.31 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.