Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/61786
Autoren: 
Hall, Peter
Härdle, Wolfgang
Kleinow, Torsten
Schmidt, Peter
Datum: 
1999
Schriftenreihe/Nr.: 
SFB 373 Discussion Paper No. 1999,62
Zusammenfassung: 
A major application of rescaled adjusted range analysis (RS analysis) is the study of price fluctuations in financial markets. There, the value of the Hurst constant, H, in a time series may be interpreted as an indicator of the irregularity of the price of a commodity, currency or similar quantity. Interval estimation and hypothesis testing for H are central to comparative quantitative Analysis. In this paper we propose a new bootstrap, or Monte Carlo, approach to such problems. Traditional bootstrap methods in this context file based on fitting a process chosen from a wide but relatively conventional range of discrete time series models, including autoregressions, moving averages, autoregressive moving averages and many more. By way of contrast we suggest simulation using a single type of continuous-time process, with its fractal dimension. We provide theoretical justification for this method, and explore its numerical properties and statistical performance by application 1,0 real data on commodity prices and exchange rates.
Schlagwörter: 
Monte Carlo
box-counting method
commodity price
financial market
fractal dimension
fractional Brownian motion
Gaussian process
longrange dependence
R-S analysis
self affineness
self similarity
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
192.23 kB





Publikationen in EconStor sind urheberrechtlich geschützt.