Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDette, Holgeren_US
dc.contributor.authorStudden, W. J.en_US
dc.description.abstractIn this note we consider the problem of maximizing the determinant of moment matrices of matrix measures. The maximizing matrix measure can be characterized explicitly by having equal (matrix valued) weights at the zeros of classical (one dimensional) orthogonal polynomials. The results generalize classical work of Schoenberg (1959) to the case of matrix measures. As a statistical application we consider several optimal design problems in linear models, which generalize the classical weighing design problems.en_US
dc.publisher|aUniv., SFB 475 |cDortmunden_US
dc.relation.ispartofseries|aTechnical Report // Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen |x2003,09en_US
dc.subject.keywordMatrix measuresen_US
dc.subject.keywordHankel matrixen_US
dc.subject.keywordorthogonal polynomialsen_US
dc.subject.keywordapproximate optimal designsen_US
dc.subject.keywordspring balance weighing designsen_US
dc.titleAn note on the maximization of matrix valued Hankel determinants with applicationen_US
dc.typeWorking Paperen_US

Files in This Item:
137.03 kB
290.29 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.