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Abstract
In this note we consider the problem of maximizing the determinant of moment matrices of

matrix measures. The maximizing matrix measure can be characterized explicitly by having
equal (matrix valued) weights at the zeros of classical (one dimensional) orthogonal polynomi-
als. The results generalize classical work of Schoenberg (1959) to the case of matrix measures.
As a statistical application we consider several optimal design problems in linear models, which
generalize the classical weighing design problems.
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1 Introduction

In recent years considerable interest has been shown in the area of matrix measures and matrix
polynomials [see Rodman (1990), Sinap and Van Assche (1994), Duran and Van Assche (1995),
Duran (1995, 1996, 1999), Duran and Lopez-Rodriguez (1996, 1997), Zygmunt (2001, 2002) among
many others]. A matrix measure μ is a p × p matrix μ = {μij} of finite signed measures μij on the
Borel field of the real line R or of an appropriate subset. It will be assumed here that for each Borel
set A ⊂ R the matrix μ(A) = {μij(A)} is symmetric and nonnegative definite, i.e. μ(A) ≥ 0. The
moments of the matrix measure μ are given by the p × p matrices

Sk = Sk(μ) =

∫
tkdμ(t) k = 0, 1, · · ·(1.1)
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If it is not stated otherwise, the integrals will usually be over the interval [0, 1]. In the present note
we are interested in the maximum of the determinant of the Hankel matrix

H2m =

⎛
⎜⎝

S0 . . . Sm

...
...

Sm . . . S2m

⎞
⎟⎠ ,(1.2)

where the maximum is taken over a certain subset

N ∗ = {(S0, . . . , S2m) ∈ M2m+1 | S0 ∈ N}(1.3)

of the moment space

M2m+1 = {(S0(μ), . . . , S2m(μ)) | μ matrix measure on [0, 1]}(1.4)

where N is some subset of symmetric positive semi-definite matrices.

For the one dimensional case p = 1 problems of this type have been studied by Schoenberg (1959) and
the solution of these problems are discrete measures supported on the roots of classical orthogonal
polynomials [see Karlin and Studden (1966)]. Our interest in these types of problems stems from
both a mathematical and practical viewpoint. On the one hand we are interested in generalizations
of Schoenberg’s results to the matrix case. On the other hand the optimization of the determinant
of the Hankel matrix in (1.2) appears naturally in some areas of mathematical statistics, where
optimal designs for linear regression experiments have to be determined. In Section 2 we present
some recent facts on matrix measures, matrix orthogonal polynomials and matrix valued canonical
moments [see Dette and Studden (2002a,b)]. This methodology simplifies the optimization problem
substantially, and it can be shown that the matrix measure maximizing the Hankel determinant
|H2m| is a uniform distribution on m+1 points. These points are the points 0, 1 and the roots of the
derivative of the (one-dimensional) mth Legendre polynomial and do not depend on the particular
choice of the set N in the definition of N ∗. The common weight matrix at these points is the solution
of the optimization problem

A∗ = arg max{|S0| | S0 ∈ M1 ∩ N}(1.5)

[here and throughout this paper we assume that the maximum in (1.5) exists and is unique]. Finally,
some statistical applications of the general results are discussed in Section 3.

2 Canonical moments and the maximum of the Hankel de-

terminant

Let N denote a subset of the nonnegative definite matrices such that the maximum in (1.5) exists
and is unique. In order to find

max{|H2m(μ)| | μ matrix measure on [0, 1]; S0(μ) ∈ N}(2.1)
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we need some basic facts on matrix measures and orthogonal matrix polynomials, which have
recently been established by Dette and Studden (2002a,b) and will be briefly summarized here for
the sake of completeness.
For a matrix measure μ on the interval [0, 1] with moments Sj =

∫ 1

0
xjdμ(t) define the ”Hankel”

matrices

H2m =

⎛
⎜⎝

S0 · · · Sm

...
...

Sm . . . S2m

⎞
⎟⎠ , H2m =

⎛
⎜⎝

S1 − S2 · · · Sm − Sm+1

...
...

Sm − Sm+1 . . . S2m−1 − S2m

⎞
⎟⎠ ,(2.2)

and

H2m+1 =

⎛
⎜⎝

S1 · · · Sm+1

...
...

Sm+1 . . . S2m+1

⎞
⎟⎠ , H2m+1 =

⎛
⎜⎝

S0 − S1 · · · Sm − Sm+1

...
...

Sm − Sm+1 . . . S2m − S2m+1

⎞
⎟⎠ ,(2.3)

then Dette and Studden (2002a) showed that a point (S0, · · · , Sn) is in the (interior) moment space
Mn+1 generated by the matrix measures on the interval [0, 1], if and only if the matrices Hn and Hn

are nonnegative (positive) definite. The nonnegativity of the matrices Hn and Hn imposes bounds
on the moments Sk as in the one dimensional case [see Dette and Studden (1997), Chapter 1]. To
be precise let

hT
2m = (Sm+1, · · · , S2m) , hT

2m−1 = (Sm, · · · , S2m−1)

h̄T
2m = (Sm − Sm+1, · · · , S2m−1 − S2m) , h̄T

2m−1 = (Sm − Sm+1, · · · , S2m−2 − S2m−1)

and define S−
1 = 0 and

S−
n+1 = hT

nH−1
n−1hn, n ≥ 1 ,(2.4)

and S+
1 = S0, S+

2 = S1 and
S+

n+1 = Sn − h̄T
n H̄−1

n−1h̄n, n ≥ 2 ,(2.5)

whenever the inverses of the Hankel matrices exist. It is to be noted and stressed that S−
n and S+

n

depend on (S0, S1, · · · , Sn−1) although this is not mentioned explicitly. It follows from a straightfor-
ward calculation with partitioned matrices that (S0, . . . , Sn−1) is in the interior of the moment space
Mn if and only if S−

n < S+
n in the sense of Loewner ordering (note that a matrix is positive definite

if and only if its main subblock and the corresponding Schur complement are positive definite).
Moreover, for (S0, . . . , Sn) ∈ Mn+1 we have

S−
n ≤ Sn ≤ S+

n(2.6)

in the sense of Loewner ordering. If (S0, S1, · · · , Sn−1) is in the interior of the moment space Mn,
then we define the kth matrix canonical moment as the matrix

Uk = D−1
k (Sk − S−

k ) , 1 ≤ k ≤ n ,(2.7)

where
Dk = S+

k − S−
k .(2.8)

These quantities are the analog of the classical canonical moments pk in the scalar case [see Dette
and Studden (1997)]. We will also make use of the quantities

Vk = Ip − Uk = D−1
k (S+

k − Sk) , 1 ≤ k ≤ n .(2.9)
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The main results in Dette and Studden (2002a) are the following theorems. The first represents the
width Dn+1 of the moment space Mn+1 in terms of the matrix canonical moments Uk and Vk and
the second shows how canonical moments appear naturally in the three term recurrence relation for
the monic matrix orthogonal polynomials.

Theorem 2.1. If the point (S0, · · · , Sn) is in the interior of the moment space Mn+1 generated by
the matrix measures on the interval [0, 1], then

Dn+1 = S+
n+1 − S−

n+1 = S0U1V1U2V2 · · ·UnVn.(2.10)

A p × p matrix polynomial is a p × p matrix with polynomial entries. It is of degree n if all the
polynomials are of degree less or equal than n and is usually written in the form

P (t) =
n∑

i=0

Ait
i.(2.11)

where the Ai are real p × p matrices. The matrix polynomial P (t) is called monic if the highest
coefficient satisfies An = Ip where Ip denotes the p× p identity matrix. The (pseudo) inner product
of two matrix polynomials is defined by

< P, Q > =

∫
P T (t)μ(dt)Q(t).(2.12)

Sinap and Van Assche (1996) call this the ’right’ inner product. The left inner product would put
the transpose of the Q polynomial. The orthogonal polynomials are defined by orthogonalizing
the sequence Ip, tIp, t

2Ip, · · · with respect to the above inner product. It is easy to see that matrix
orthogonal polynomials satisfy a three term recurrence realtionship. The following result expresses
the coefficients in this recurrence relation for the monic orthogonal polynomials in terms of canonical
moments.

Theorem 2.2.
Let μ denote a matrix measure on the interval [0, 1] with matrix canonical moments Un, n ∈ IN.

1) The sequence of monic orthogonal polynomials {P k(x)}k≥0 with respect to the matrix measure
μ satisfies the recurrence formula P 0(x) = Ip, P−1(x) = 0 and for m ≥ 0

xP m(x) = Pm+1(x) + Pm(x)(ζ2m+1 + ζ2m) + P m−1(x)ζ2m−1ζ2m,(2.13)

where the quantities ζj ∈ R
p×p are defined by ζ0 = 0, ζ1 = U1, ζj = Vj−1Uj if j ≥ 2 and the

sequences {Uj} and {Vj} are given in (2.7) and (2.9).

2) The sequence of monic orthogonal polynomials {Qk(x)}k≥0 with respect to the matrix measure
x(1 − x)dμ(x) satisfies the recurrence formula Q0(x) = Ip, Q−1(x) = 0 and for m ≥ 0

xQm(x) = Qm+1(x) + Qm(x)(γ2m+2 + γ2m+3) + Qm−1(x)γ2m+1γ2m+2 .(2.14)

where the quantities γj ∈ R
p×p are defined by γ1 = V1, γj = Uj−1Vj if j ≥ 2 and the sequences

{Uj} and {Vj} are given in (2.7) and (2.9).
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In the following discussion moment points with Sn = S+
n for some n ∈ N will be of importance.

Note that these points satisfy Un = Ip for some n ∈ N.

Theorem 2.3. Assume that (S0, . . . , S2m−1) ∈ Int(M2m), then the probability measure correspond-
ing to the point (S0, . . . , S2m−1, S

+
2m) is uniquely determined. The roots are the different zeros of the

polynomial
x(1 − x)det Qm−1(x),

where Qm−1(x) is the (m − 1)th monic orthogonal polynomial with respect to the matrix measure
x(1 − x)dμ(x). The weights are determined as the unique solution of the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0

S1

...

Sm

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip Ip . . . Ip Ip

0 x2Ip . . . xk−1Ip Ip

...
...

...
...

0 xm
2 Ip . . . xm

k−1Ip Ip

O Qm−1(x2) . . . 0 0
...

...
...

...

0 0 Qm−1(xk−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Λ1

Λ2

...

Λk−1

Λk

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.15)

where rank(Λi) = p if xi ∈ {0, 1}, rank(Λi) = �i if det Qm−1(xi) = 0, and �i is the multiplicity
of xi as a root of the polynomial det Qm−1(x).

For a proof of this result see Dette and Studden (2002b). We now present some new properties
of matrix valued canonical moments, which turn out to be useful for the maximization of the
determinant of the Hankel matrix.

Lemma 2.4. The eigenvalues of the matrix valued canonical moments U1, U2, . . . are all real and
located in the interval [0, 1], whenever the canonical moments are defined.

Proof. Recall the definition of the canonical moments in (2.7) and consider the transformation

Ũk = (S+
k − S−

k )1/2Uk(S
+
k − S−

k )−1/2

= (S+
k − S−

k )−1/2(Sk − S−
k )(S+

k − S−
k )−1/2.

Obviously Ũk is nonnegative definite und symmetric. On the other hand

Ip − Ũk = (S+
k − S−

k )−1/2(S+
k − Sk)(S

+
k − S−

k )−1/2

is also nonnegative definite and symmetric. Therefore Ũk has real eigenvalues located in the interval
[0, 1] and the assertion follows, because Uk and Ũk are similar.

�
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Lemma 2.5. Let μ denote a matrix measure on the interval [0, 1] with canonical moments U1, U2, . . . ,
then the determinant of the Hankel matrix can be represented as

|H2m(μ)| = |S0(μ)|m+1 ·
m∏

j=1

{|V2j−2| · |U2j−1| · |V2j−1| · |U2j |}m−j+1(2.16)

where |V0| = 1.

Proof. From (2.7) and Theorem 2.1 we have Sk − S−
k = S0

∏k
j=1 Vj−1Uj with V0 = Ip. Now a well

known result on partitioned matrices [see e.g. Muirhead (1982), 581-582] and the definition of S−
2m

in (2.4) shows that

|H2m(μ)| = |S2m − S−
2m| · |H2m−2(μ)|

=
m∏

j=0

|S2j − S−
2j |

= |S0|m+1
m∏

j=1

{|V2j−2| · |U2j−1| · |V2j−1| · |U2j |}m−j+1 .

�

Theorem 2.6. The determinant of the Hankel matrix defined in (1.2) attains its maximum in the
set N ∗ defined in (1.3) if and only if the corresponding matrix measure μ has equal weight 1

m+1
A∗

at the roots of the polynomial

x(1 − x)P ′
m(x),(2.17)

where Pm(x) denotes the mth (univariate) Legendre polynomial on the interval [0, 1] and the matrix
A∗ is defined in (1.5).

Proof. We determine the solution of the maximization problem in two steps. In a first step we
use Lemma 2.5 to find the canonical moments of the maximizing measure and the corresponding
moment S∗

0 . In the second step we show that the corresponding moment point (S∗
0 , S

∗
1 , . . . , S

∗
2m) of

the maximizing measure is in fact an element of the set N ∗ defined in (1.3).

By Lemma 2.5 the determinant can be maximized using the matrix A∗ in (1.5) for S0 and the
canonical moments

U∗
2k−1 =

1

2
Ip U∗

2k =
m − k + 1

2(m − k) + 1
Ip k = 1, . . . , m.(2.18)

The first assertion is obvious, while the second follows by maximizing the terms

|V2j−1| · |U2j−1|; |V2j |m−j|U2j |m−j+1

in (2.16) separately using Lemma 2.4. For example the eigenvalues of U2j−1, say λ1, . . . , λp, are real
and located in the interval [0, 1] and this gives

|V2j−1||U2j−1| = |(Ip − U2j−1)U2j−1| =

p∏
i=1

λi(1 − λi).
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The product is maximal for λ1 = . . . = λp = 1/2, which yields U∗
2j−1 = 1

2
Ip, and the other cases are

treated similary.

Now we obtain from (2.18) U∗
2m = Ip which shows that the corresponding moment point (S∗

0 , . . . , S
∗
2m)

satisfies S∗
2m = S∗+

2m. By Theorem 2.3 it therefore follows that the maximizing measure μ∗ is sup-
ported at the roots of the polynomial x(1 − x)Qm−1(x), where Qm−1(x) is the (m − 1)th monic
orthogonal polynomial with respect to the matrix measure x(1 − x)μ(dx). By Theorem 2.2 this
polynomial can be obtained by the recursion Q−1(x) = 0 ∈ R

p×p, Q0(x) = Ip,

Qj+1(x) = (x − 1

2
)Qj(x) − 1

4

(m − j − 1)(m − j + 1)

(2(m − j) − 1)(2(m − j) + 1)
Qj−1(x).

Consequently, all matrix polynomials are diagonal. In particular Qm−1(x) = Ip · Q̃m−1(x), where

x(1 − x)Q̃m−1(x) is the supporting polynomial of the (one-dimensional) sequence of canonical mo-
ments

1

2
,

m

2m − 1
,
1

2
,

m − 1

2m − 3
, . . . ,

1

2
,
1

3
, 1.(2.19)

The results in Dette and Studden (1997), Chap. 4, show that Q̃m−1(x) is proportional to P ′
m(x).

Similarly, observing the definition of canonical moments it is easy to see that the corresponding
moments satisfy

S∗
k = ckA

∗ k = 0, 1, 2, . . .

where c0, c1, c2, . . . are the one-dimensional moments corresponding to the sequence of one dimen-
sional canonical moments defined in (2.19). Therefore the system of equations in (2.15) reduces
to ⎡

⎢⎣
c0

...

cm

⎤
⎥⎦⊗ A∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1 1 . . . 1 1

0 x1 xm−1 1
...

...
...

...

0 xm
1 . . . xm−1 1

⎤
⎥⎥⎥⎥⎦⊗ Ip

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎡
⎢⎣

Λ0

...

Λm

⎤
⎥⎦ .(2.20)

where x1, . . . , xm−1 are the roots of the polynomial P ′
m(x) and throughtout this paper ⊗ denotes the

Kronecker product. Because the D-optimal design for the univariate polynomial regression model
has equal weights at the roots of the polynomial P ′

m(x) it follows that

⎡
⎢⎢⎢⎢⎣

1 1 . . . 1 1

0 x1 xm−1 1
...

...
...

...

0 xm
1 . . . xm

m−1 1

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

c0

c1

...

cm

⎤
⎥⎥⎥⎥⎦ =

1

m + 1

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦ ,

which implies for the unique solution of (2.20)

Λj =
1

m + 1
A∗,

where the matrix A∗ is defined by (1.5). Because the optimal canonical moments in (2.18) satisfy
0 < U∗

k < Ip (k = 1, . . . , 2m − 1), U∗
2m = Ip, the corresponding moment point (S∗

0 , . . . , S
∗
2m) is

obviously an element of the set N ∗ defined in (1.3), which completes the proof of the theorem.

7
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The following result is proved in a similar manner and its proof therefore omitted.

Theorem 2.7. The quantity
|H2m(μ)|
|H2m−2(μ)|

attains its maximum in the set N ∗ defined in (1.3) if and only if the corresponding matrix measure
μ puts weights

1

2m
A∗,

1

m
A∗, . . . ,

1

m
A∗,

1

2m
A∗

at the roots of the polynomial
x(1 − x)Ũm−1(x),

where Ũm−1(x) denotes the (one-dimensional) Chebyshev polynomial of the second kind on the in-
terval [0, 1] and the matrix A∗ is defined in (1.5).

3 A statistical application

Consider a linear regression model of the form

Y�k =

p∑
i=1

z�ki

( m∑
j=0

βjix
j
�

)
+ ε�k k = 1, . . . , n�; � = 1, . . . , s(3.1)

where ε11, . . . , εsns are i.i.d. random variables with zero mean and variance σ2 > 0, x� varies in
the interval [0, 1] (� = 1, . . . , s), and z�ki (k = 1, . . . , n�; i = 1, . . . , p) are chosen from either the set
{0, 1} or the set {−1, 0, 1}. The quantities z�ki and x� can be controlled by the experimenter but
the parameters βij are unknown and have to be estimated from the known data.

The model (3.1) is a generalization of the classical weighing design problem which corresponds to
the case m = 0. [see Banerjee (1975) or Shah and Sinha (1989)]. For m = 0 there are p objects
with unknown weights β01, . . . , β0p which are to be determined using either a spring balance or a
chemical balance. A total of n weighings of observations are allowed. For the spring balance any
number of the objects can be placed on the single pan and the measurement represents the total
weight of the objects. This corresponds to the case where z�ki are chosen from {0, 1}. For m = 0 the
� subscript does not appear and zki is one or zero depending on whether the ith object is included
in the kth weighing or not. If zlki are chosen from {−1, 0, 1} then one has a chemical balance with
2 pans and one can observe the difference in weight of any two subsets of the objects. The model
(3.1) generalizes the classical weighing model to the case where the weight of all the objects depends
on a variable x� by a polynomial trend. Note that the degree of the polynomial is the same for each
of the objects.

In general, the model (3.1) can be conveniently written as

Y = Xβ + ε(3.2)

8



where Y = (Y1, . . . , Yn)
T denotes the vector of observations, ε ist the vector of (unobservable) errors,

β = (β01,, . . . , β0p, . . . , βm1, . . . , βmp)
T is the vector of unknown parameters. The matrix X is called

the design matrix and is given by

X =

⎡
⎢⎢⎢⎢⎣

(1, x1, . . . , x
m
1 ) ⊗ Z1

(1, x2, . . . , x
m
2 ) ⊗ Z2

...

(1, xs, . . . , x
m
s ) ⊗ Zs

⎤
⎥⎥⎥⎥⎦ ,(3.3)

where for � = 1, . . . , s the matrix Z� = (z�ki)
i=1,...,p
k=1,...,n�

has entries 0 or 1 in the spring balance case.
The least squares estimate of β is chosen to minmize the n-dimensional Euclidean norm |Y −Xβ|.
This estimate is then given by β̂ = (XT X)−1XTY and its covariance matrix can be calculated as

Cov(β̂) = σ2(XTX)−1 = σ2

⎡
⎢⎢⎢⎢⎣

s∑
�=1

ZT
� Z�

s∑
�=1

x�Z�Z� . . .
s∑

�=1

xm
� ZT

� Z�

...
...

...
...

s∑
�=1

xm
� ZT

� Z�

s∑
�=1

xm+1
� ZT

� Z� . . .
s∑

�=1

x2m
� ZT

� Z�

⎤
⎥⎥⎥⎥⎦ = σ2H−1

2m(ξ),

where H2m(ξ) denotes the ”Hankel” matrix of order 2m corresponding to the matrix measure ξ with
weights Λ� = ZT

� Z� at the points x� (� = 1, . . . , s). Note that the matrix Λ� is nonnegative definite
(by its construction) and has nonnegative integer valued entries.

Our purpose here is to maximize the determinant of a normalized version of the matrix H2m(ξ) in an
approximate sense which will be explained in the next paragraph, since, neither the weighing design
problem (m = 0) nor the ordinary polynomial regression problem (p = 1), are completely solved
in the situation above [see e.g. Banerjee (1975), Shah and Sinha (1989), Imhof, Krafft, Schaefer
(2000)]. For m = 0, in the weighing design, a complete solution for the approximate case is given in
Huda and Mukerjee (1988). The ordinary polynomial D-optimal design in the approximate sense is
”well-known” and given, for example in Dette and Studden (1997). It will be shown that the two
separate solutions can be combined in a simple manner. We give a rather detailed discussion of the
spring balance design. The case of the chemical balance is very similar and left to the reader.

Let Ω ⊂ R
p denote the set of all p-dimensional vectors with components in {0, 1} , which has t = 2p

elements. A probability measure ξ with finite support on the set

X := [0, 1] × Ω(3.4)

is called a design on X [see Pukelsheim (1993)]. If n is the total number of observations and ξ puts
mass ξ�k at the point (x�, ωk) ∈ X , then the experimenter takes approximately nξ�k independent
observations under experimental condition x� using the polynomial regression models corresponding
to the nonvanishing components in the vector ωk. For (x, ω) ∈ X let fT (x, ω) = (1, x, . . . , xm)⊗ ωT

denote the vector of regression functions of length p(m + 1), then the information matrix is given

9



by

M(ξ) =

∫
X

f(x, ω)fT (x, ω)dξ(x, w) =

s∑
�=0

t∑
k=0

ξ�k

⎛
⎜⎜⎜⎜⎝

1

x�

...

xm
�

⎞
⎟⎟⎟⎟⎠ (1, x�, . . . , x

m
� ) ⊗ ωkω

T
k .

Without loss of generality we assume that x0, . . . xr are all distinct and define nonnegative matrix
weights

Λ� =

t∑
k=0

ξ�kωkω
T
k � = 0, . . . , s.(3.5)

If μ is the matrix measure with mass Λj at xj (j = 0, . . . , s), then it follows that M(ξ) = H2m(μ),
and a D-optimal (approximate) design can be obtained by maximizing H2m(μ) over the set of matrix
measures

μ =
s∑

j=1

Λjδxj
(3.6)

with weights of the form (3.5). With reference to the previous paragraph we have that Λ� is
approximately equal to ZT

� Z�/n, where n is the total number of observations.

Throughout this section we let

Ξ∗∗ = {μ | μ ∈ Ξ is of the form (3.5) and (3.6)} ,(3.7)

where Ξ is the set of all matrix measures on the interval [0, 1]. Obviously we have Ξ∗∗ ⊂ Ξ∗, where

Ξ∗ = {μ | μ ∈ Ξ with S0(μ) = S0(ν) for some measure ν ∈ Ξ∗∗ }.(3.8)

Note that the moments (S0, . . . , S2m) of the matrix measures in Ξ∗ define a set of the form (1.3).

Theorem 3.1. Let Sj ⊂ {0, 1}p denote the set of all vectors with exactly j components equal to
one (j = 0, . . . , p). A D-optimal (approximate) spring balance design for the regression model (3.1)
is the uniform distribution on the set {(x, ω) | x(1 − x)P ′

m(x) = 0, ω ∈ S� p
2
� ∪ S� p+1

2
�}, where Pm

denotes the mth Legendre polynomial on the interval [0, 1].

Proof. Consider first the maximization of the Hankel determinant H2m(μ) over the set Ξ∗ defined
in (3.8). According to Theorem 2.6 the solution of this problem is given by the matrix measure

μ∗ =
1

m + 1
A∗

m∑
j=0

δxj
,(3.9)

where x0, . . . , xm are the roots of the polynomial x(1 − x)P ′
m(x) and

A∗ = argmax
{
|S0|

∣∣∣S0 =

∫ 1

0

μ(dx); μ ∈ Ξ∗∗
}
.(3.10)
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Note that for the case m = 0 we do not hae to distinguish different explanatory variables and
consequently the representation (3.5) does not depend on � in this case. Therefore the optimization
in (3.10) simplifies to

A∗ = argmax
{
|S0|

∣∣∣S0 =
t∑

k=0

ξkωkω
T
k ;

t∑
k=0

ξk = 1, ξk > 0, ωk ∈ Ω
}
.(3.11)

This problem is the problem of finding the D-optimal information matrix for the classical spring
balance weighing design (in the approximate case) and has been solved by Huda and Mukerjee
(1988) using the classical equivalence theory for approximate designs. The D-optimal approximate
spring balance weighing design ξ∗0 puts equal weight at the elements of the set S�p/2�∪S�(p+1)/2� and
the maximizing information matrix is given by

A∗ =
	p/2
 + 1

2(2	p/2
 + 1)
(Ip + Jp) =

(
2	p/2
 + 1

	p/2

)−1 ∑

ω∈S�p/2�∪S�p/2�+1

ωωT(3.12)

where Jp ∈ R
p×p denotes the matrix with all entries equal to one. Therefore the measure maximizing

H2m(μ) in the class Ξ∗ is of the form (3.9) with A∗ given by (3.12). From the second equality in
(3.12) it follows that the matrix measure μ∗ is also in the class Ξ∗∗ defined in (3.7) and therefore
corresponds to an approximate design ξ. It is now easy to see that the design ξ∗m specified in the
Theorem 3.1 corresponds to μ∗ by the relation (3.5), that is

|M(ξ∗m)| = |H2m(μ∗)| = max{|H2m(μ)| | μ ∈ Ξ∗}
= max |{H2m(μ)| | μ ∈ Ξ∗∗}
= max{|M(ξ)| | ξ design on X}.

This proves D-optimality of the design ξ∗m specified in Theorem 3.1. �

Remark 3.2. It is worthwhile to mention that, once the design in Theorem 3.1 has been identified,
its D-optimality can also be established by an application of the classical equivalence theorem for
the D-optimality criterion [see Pukelsheim (1993), p. 180].

One can use the results of Section 2 to solve other optimization problems in statistics. Exemplarily
we consider the case, where the main interest of the experimenter is to discriminate between a
regression of degree m and m − 1 in the model (3.1) and a design which maximizes

H2m(ξ)

H2m−2(ξ)
(3.13)

might be appropriate [see e.g. Studden (1980) or Pukelsheim (1993)]. These designs are called
D1-optimal and can be obtained by similar arguments as given in the proof of Theorem 3.1 using
Theorem 2.7.

Theorem 3.3. A D1-optimal design ξ∗1 in the regression model (3.1) maximizing the ratio in (3.13)
is supported at the set T1 = {(x, ω) | x(1 − x)Ũm−1(x) = 0, ω ∈ S� p

2
� ∪ S� p+1

2
�} where Ũm−1(x)
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denotes the (m − 1)th (one-dimensional) Chebyshev polynomial of the second kind on the interval
[0, 1] orthogonal with respect to the measure

√
x(1 − x)dx. This design has equal masses

1

m

((2	p/2
 + 1

	p/2

))−1

at the points {(x, ω) ∈ T1 | x ∈ (0, 1)} while the masses at the points {(x, ω) ∈ T1 | x ∈ {0, 1}} are
given by

1

2m

((2	p/2
 + 1

	p/2

))−1

.
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