Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323447 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Journal of Intelligent Manufacturing [ISSN:] 1572-8145 [Volume:] 36 [Issue:] 4 [Publisher:] Springer US [Place:] New York, NY [Year:] 2024 [Pages:] 2709-2726
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
We propose a novel image-analysis based machine-learning approach to the fully-automated identification of the optical quality, of functional properties, and of manufacturing parameters in the field of 2D inkjet-printed test structures of conductive traces. To this end, a customizable modular concept to simultaneously identify or predict dissimilar properties of printed functional structures based on images is described and examined. An application domain of the concept in the printing production process is outlined. To examine performance, we develop a dataset of over 5000 test structures containing images and physical characteristics, which are manufactured using commercially available materials. Functional test structures are fabricated via a single-nozzle vector-based inkjet-printing system and thermally sintered. Physical characterization of electrical conductance, image capturing, and evaluation of the optical quality of the test structures is done by an automatic in-house built measurement station. Conceptionally, the design of a convolutional neural network is described to identify the optical quality and physical characteristics based only on acquired images. A mathematical apparatus that allows assessment of the identification accuracy is developed and described. The impact of printing resolution, of emerging defects in the geometry of printed structures, and of image quality and color space on the identification accuracy is analyzed. Quality groups related to the printing resolution that affect identification accuracy are determined. Supplementarily, we introduce not yet reported classification of processes related to the fabrication of printed functional structures, adopted from the process analytical technology.
Schlagwörter: 
Computer vision
Image analysis
Inkjet printing
Machine learning
Neural network
Printed electronics
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.