Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/322876 
Erscheinungsjahr: 
2012
Schriftenreihe/Nr.: 
Discussion Papers Series No. 12-09
Verlag: 
Utrecht University, Utrecht School of Economics, Tjalling C. Koopmans Research Institute, Utrecht
Zusammenfassung: 
In the economics literature there are two dominant approaches for solving models with optimal experimentation (also called active learning). The first approach is based on the value function and the second on an approximation method. In principle the value function approach is the preferred method. However, it suffers from the curse of dimensionality and is only applicable to small problems with a limited number of policy variables. The approximation method allows for a computationally larger class of models, but may produce results that deviate from the optimal solution. Our simulations indicate that when the effects of learning are limited, the differences may be small. However, when there is sufficient scope for learning, the value function solution is more aggressive in the use of the policy variable.
Schlagwörter: 
design of fiscal policy
optimal experimentation
stochastic optimization
time-varying parameters
numerical experiments
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
375.08 kB





Publikationen in EconStor sind urheberrechtlich geschützt.