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Abstract  

In the economics literature there are two dominant approaches for solving 
models with optimal experimentation (also called active learning). The first approach 

is based on the value function and the second on an approximation method. In 
principle the value function approach is the preferred method. However, it suffers 

from the curse of dimensionality and is only applicable to small problems with a 
limited number of policy variables. The approximation method allows for a 

computationally larger class of models, but may produce results that deviate from 
the optimal solution. Our simulations indicate that when the effects of learning are 

limited, the differences may be small. However, when there is sufficient scope for 
learning, the value function solution is more aggressive in the use of the policy 

variable. 

 
Keywords: design of fiscal policy, optimal experimentation, stochastic optimization, 

time-varying parameters, numerical experiments. 
 

JEL classification: C63, E61, E62 
 
Acknowledgements 

 We would like to thank Volker Wieland for providing us with his software used in this paper. 
 Furthermore, in writing this paper we have benefited greatly from the discussions we had 
 with Tom Cosimano, Marco Tucci and Volker Wieland. 

 



1 Introduction

In the last decade a large literature has emerged in economics on the subject
of optimal or strategic experimentation also referred to as active learning.
The seminal work on this subject in economics, stems from an early paper by
MacRae (1972, 1975), followed by a range of theoretical papers like Easley
and Kiefer (1988), Bolton and Harris (1999), Salmon (2001), Moscarini and
Smith (2001) and applications like Buera et. al (2011).

There are two prevailing methods for solving a general class of models with
optimal experimentation. The first method is based on the value function
approach and the second on an approximation method. The value func-
tion approach uses dynamic programming for the full problem as used in
studies by Prescott (1972), Taylor (1974), Easley and Kiefer (1988), Kiefer
(1989), Kiefer and Nyarko (1989), Aghion et. al (1991) and more recently
used in the work of Beck and Wieland (2002), Coenen et. al (2005), Levin
et. al (2003) and Wieland (2000a, 2000b). A nice set of applications on
optimal experimentation, using the value function approach, can be found
in Willems (2012).

In principle, the value function is approach is the preferred method as it
derives the optimal values for de policy variables through Bellman’s (1957)
dynamic programming. Unfortunately, it suffers from the curse of dimen-
sionality, Bertsekas (1976), and is only applicable to small problems with one
or two policy variables. This is caused by he fact that solution space needs
to be discretized in such a fashion that it cannot be solved in feasible time.
The approximation methods as described in Cosimano (2008) and Cosimano
and Gapen (2005a, 2005b), Kendrick (1981) and Hansen and Sargent (2008)
use approaches, that are applied in the neighborhood of the linear regula-
tor problems.1 2 Because of this local nature with respect to the statistics
of the model, the method is numerically far more tractable and allows for
models of larger dimension. However, the verdict is still out as to how well
it performs in terms of approximating the optimal solution derived through

1For consistency and clarity in the main text, we used the term approximation method
in stead of adaptive or dual control. The adaptive or dual control approach in MacRae
(1975), see Kendrick (1981), Amman (1996) and Tucci (2004), uses methods that draw on
earlier work in the engineering literature by Bar-Shalom and Sivan (1969) and Tse (1973).

2There are difference between the approximation approaches in Cosimano (2008)) and
in Kendrick (1981), which we will not discuss in detail here. Through out the paper we
will use the approach in Kendrick(1981).
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the value function. By the way, the approximation method described here,
should not be mistaken for a cautious or passive learning method. Here we
concentrate only on optimal experimentation - active learning - approaches.

Both solution methods consider dynamic stochastic models in which the
control variables can be used not only to guide the system in desired di-
rections but also to improve the accuracy of estimates of parameters in the
models. Thus, there is a trade off in which experimentation of the policy
variables early in time detracts from reaching current goals, but leads to
learning or improved parameter estimates and thus improved performance
of the system later in time. Ergo, the dual nature of the control. For this
reason, we concentrate in Section 4 on the policy function in the initial
period. Usually most of the experimentation - active learning - is done in
the beginning of the time interval, and therefore, the largest difference be-
tween results obtained with the two methods may be expected in this period.

In this paper we focus on comparing the policy function obtained by Beck
andWieland (2002), through the value function, to the one obtained through
approximation methods. Note that the model used by Beck and Wieland
(2002) closely resembles the model and framework presented in MacRae
(1972, 1975), which has served as a bench mark in much of the literature.3

In doing the comparison, we have derived an analytic form of the cost-to-go
function for the approximation approach following the method outlined in
the Amman and Kendrick (1995) paper and the extension of these results in
Tucci, Kendrick and Amman (2010). After describing both of these methods
in Section 3, we will present in Section 4. of the paper a comparison of the
policy function results obtained through the value function approach and
the approximation approach.

2 A general framework

As the MacRae model (1972, 1975) is used as a bench mark in Beck and
Wieland (2002), from here on we will use the abbreviation MBW to refer
to both sets of results in the literature. The general framework, Kendrick
(1981), of this model starts with a linear difference equation for a finite time
horizon

xt+1 = At (θt)xt +Bt (θt)ut + ct (θt) + ϵt (1)

3See Amman and Kendrick (2008).
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where t ∈ [0, N − 1] is the time index, xt ∈ ℜ(n×1) the state vector, ut ∈
ℜ(m×1) the control vector, ϵt ∈ ℜ(n×1) a vector of system noise terms,
At(θt) ∈ ℜ(n×n) the state vector coefficient matrix, Bt(θt) ∈ ℜ(n×m) the
control vector coefficient matrix, ct(θt) ∈ ℜ(n×1) the exogenous coefficient
vector, θt ∈ ℜ(s×1) a vector containing the subset of the coefficients in At(θt),
Bt(θt) and ct(θt) that are stochastic. The measurement equation of the state
xt has the shape

yt = Htxt + ξt (2)

where yt ∈ ℜ(r×1) is a measurement vector, Ht ∈ ℜ(r×n) is a known mea-
surement coefficient matrix ξt ∈ ℜ(r×1) a vector of measurement noise terms.
The time-varying parameter equation for θt is

θt+1 = Dtθt + ηt (3)

where Dt ∈ ℜ(s×s) is a known matrix, ηt ∈ ℜ(s×1) a vector of parameter-
noise terms.4 The a vector noise terms for the system, measurement and
parameter evolution equations are normally distributed

ϵt
i.i.d.∼ N (0,Σϵϵ) ξt

i.i.d.∼ N
(
0,Σξξ

)
ηt

i.i.d.∼ N (0,Σηη) (4)

and the covariances matrices Σϵϵ,Σξξ,Σηη are assumed to be known. The
initial conditions for the state vector (1) and parameter vector (3), that are
also normally, distributed

x0 ∼ N (x0,Σ
xx
0 ) θ0 ∼ N

(
θ0,Σ

θθ
0

)
(5)

with the covariances matrices Σxx
0 ∈ ℜ(n×n), Σθθ

0 ∈ ℜ(s×s). Due to the lin-
earity in (1), this normality is carried over in time. As both {θt, xt} are
stochastic, their (posterior) estimates {x̂t|t, θ̂t|t} will be obtained through
Bayesian updating using the Kalman filter. The same holds for the corre-
sponding estimated covariance matrices {Σ̂xx

t|t , Σ̂
θθ
t|t}.

The criterion function may be written as

J = E

{
δNLN (xN ) +

N−1∑
t=0

δtLt (xt, ut)

}
(6)

4For more general forms of equation (3), including the return to normality model, see
Tucci (2004) page 17.
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where J ∈ ℜ is the criterion value, E the expectations operator, δ ∈ [0, 1 >
the discount factor, LN ∈ ℜ the criterion function for the terminal period
N , xN ∈ ℜ(n×1) the state vector for the terminal period N , Lt ∈ ℜ the
criterion function for period t, xt ∈ ℜ(n×1) the state vector for period t and
ut ∈ ℜ(m×1) the control vector for period t. The two terms on the right-hand
side of equation (6) are defined as

LN (xN ) =
1

2
(xN − x̃N )′WN (xN − x̃N ) (7)

and

Lt(xt, ut) =
1

2

[
(xt − x̃t)

′Wt(xt − x̃t)+

(xt − x̃t)
′Ft(ut − ũt) + (ut − ũt)

′Λt(ut − ũt)

]
(8)

where x̃N ∈ ℜ(n×1) the desired state vector for terminal period N , WN ∈
ℜ(n×n) the symmetric state variable penalty matrix for terminal period N ,
x̃t ∈ ℜ(n×1) the desired state vector for period t, ũt ∈ ℜ(m×1) the desired
control vector for period t,Wt ∈ ℜ(n×n) the symmetric state variable penalty
matrix for period t, Ft ∈ ℜ(n×m) the penalty matrix on state-control variable
deviations for period t, Λt ∈ ℜ(m×m) the symmetric control variable penalty
matrix for period t.

This completes the description of the general framework that will be ap-
plied in Section 4. In the next Section we describe briefly how the policy
function can be derived for the approximation method5

3 Solution methods for the general framework

The value function approach, though computational intensive, is quite straight
forward, e.g. integrate the value V function backward in time, starting at
N − 1

V (xN−1, uN−1) = min
uN−1

{LN−1(xN−1, uN−1) + δE V (xN |PN−1)} (9)

5The general framework in this section is coded in two software packages DualPC,
Amman and Kendrick (1990), and more recently in Duali, Kendrick et. al. (2006). The
framework may also be extended for the situation with rational expectations, cf. Amman
and Kendrick (2003) and Kendrick et. al (2013).
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subject to equation (1). The set PN−1 contains, under the normality as-
sumption, the means and variance of the stochastic elements in equations
(1)-(5). If we ignore measurement error, this means that

PN−1 = {xN−1,Σ
xx
N−1, θN−1,Σ

θθ
N−1}

Equation (9) is solved using discretization, see Judd (1998) or Kendrick et.
al (2006). Following Easley and Kiefer (1988) and Kiefer and Nyarko (1989)
we can obtain for N → ∞, the optimal stationary policy, hv, from the value
function

u∗v = hv(x0) (10)

where u∗v is the optimal response given the initial state x0 in the value func-
tion approach.

Now lets turn to the approximation approach. The appraximation approach
solves the cost-to-go function

J∗
N = min

u0

E

... min
uN−2

E

min
uN−1

E {CN |QN−1} |QN−2

 · · · |Q0

 (11)

subject to (1) with

CN−j = LN (xN ) +

N−1∑
t=j

Lt(xt, ut) (12)

for j = 0, . . . , N−1 and Qj , like Pj , is defined as the means and covariances
of the stochastic elements at time j. The essential difference between (9)
and (11) is in the way Pj and Qj are treated in the optimization. With
the value function, the stochastic elements are fully integrated backward in
time over the full probability space.

In the approximation approach, first an certainty equivalence solution is
derived, Bertsekas (1976), for the problem in (1)-(8) using dynamic pro-
gramming. Then, ∀k ∈ [t, .., N − 1] the estimated stochastic elements

{x̂k|k, Σ̂xx
k|k, θ̂k|k, Σ̂

θθ
k|k}
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are projected forward in time in the neighbourhood of this certainty equiv-
alence problem using Bayesian updating. Once a new set of estimates is
obtained, the control set {uk, .., uN−1} is recomputed. These steps are re-
peated until convergence is reached. Through this forward projection, the
combinatorial explosion in (9) is avoided and the resulting algorithm can be
solved in polynomial time with O(n3).6

Based on equations (11)-(12) and following Tucci et. al (2010), the cost-
to-go JN can be divided into three terms, i.e.

JN = JD + JC + JP (13)

JD being the deterministic component, JC the cautionary component and
JP the probing component. The probing component is the component that
represents the experimentation - active learning - part of JN .The optimal is
obtained by minimizing JN

7

u∗a = argmin
u
JN (x0, u) (14)

which is similar to equation (10). and provides the possibility to (numeri-
cally) derive the policy function

u∗a = ha(x0) (15)

where u∗a is the optimal response given the initial state x0 in the approxi-
mation approach. In the next section we will analyze the outcomes for both
the policy functions (10) and (15).

4 Comparison of the MBW Policy Functions

In order to make a comparison between the results based on the value func-
tion and those of the approximation method, we used Wieland’s software
and his parameter set.8 We can write the MBW model, using the framework
of Section 2, in its scalar form as

6The dimension of the state xt, n, is usually the largest dimension and matrix opera-
tions of the order n3, define the degree of complexity in the algorithm.

7Once again we would like to stress the quite frequently, equation (13) may have
multiple minima as in Amman and Kendrick (1995) and Kendrick (1978).

8The software is available through the web site http://www.volkerwieland.com. A
detailed discussion on how to compute the value function is found in Kendrick et. al
(2006).
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Given the the difference equation

xt+1 = αxt − but + ctϵt (16)

Find {u0, .., uN−1} to minimize

J =
1

2
δNwN (xN − x̃N )2 +

1

2

N−1∑
t=0

δt{wt(xt − x̃t)
2 + λt(ut − ũt)

2
t + ψt(xt − x̃t)(ut − ũt)}(17)

For comparison with the general framework in Section 2, this means that
At = α = 1, ct = 0, Wt = wt = 1, Λt = λt = 0, Ft = ψt = 0, x̃t = 0, ũt = 0
∀ t and Σϵϵ = σ2ϵ = 1. The initial estimate of the stochastic parameter enters
only the B matrix, so B(θ̂0|0) = θ̂0|0 = b̂ = −0.3, with estimated variance

Σ̂θθ
0|0 = σ̂2b = 0.25. There is no measurement error, which means H = 1 and

Σξξ = σ2ξ = 0 and no parameter evolution, hence D = 1 and Σηη = σ2η = 0

and as a consequence ∀t θ̂t+1|t = θ̂t|t = b̂. The initial estimate of the state

x̂0|0 = x̂0 = x0 and its variance Σ̂xx
0|0 = σ̂2x = 0, the discount factor δ = 0.95,

which completes the parameter set. Following Beck and Wieland (2002) we
will focuss on the stationary outcome, hence N → ∞.

Since the MBWmodel has a single control variable and a single state variable
it is possible to derive an analytic form of the cost-to-go for the approxima-
tion approach. This is based on earlier work done in Amman and Kendrick
(1995) and Tucci et. al (2010), when we analyzed the question whether or
not the cost-to-go function was characterized by non-convexities. The three
components in equation (13) are9

9The derivation of equations (19)-(21) is rather lengthy. On request it can be provided
by the corresponding author. The derivation is different from the one presented in Amman
and Kendrick (1995) and Tucci et. al (2010), as we investigate the situation where N → ∞
with δ ∈ [0, 1 >.
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JN = JP + JC + JD (18)

JD =
1

2
δ(x0 + b̂u)2 (19)

JC =
1

2

δ[σ̂2b (1− δ)u2 + σ2ϵ ]

(1− δ)
(20)

JP =
1

2

σ̂2b δ
2[(σ̂2b − 1)u2 + σ2ϵ ][x0 + 2b̂u]2

b̂2(1− δ)(σ̂2bu
2 + σ2ϵ )

(21)

By minimizing JN (u, x0) we get the policy function u∗a = ha(x0) from (14)
as the approximated optimal response, that we can compare with value
function results, (10), u∗v = hv(x0), derived through numerical integration.
For our simulations, we used a grid for x0 ∈ [−5, 5] and a line search for
u ∈ [−20, 20], analyzing the differences between the two approaches. We
start with the baseline scenario using the above parameters. The results are
shown in Figure 1

Figure 1: Baseline
δ = 0.95, b̂ = −0.30, σ̂2b = 0.25, σ2ϵ = 1.0
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With this baseline parameter set, a high discount rate and high variances,
the value function solution has more aggressive control values than those in
the approximation approach. This was to be expected as the value func-
tion, in principle, covers to whole solution space in comparison to the local
approximation approach.10

This is highlighted in Figure 2, where we plotted the three components
of the of the cost-to-go for x0 = 0. Especially for a sufficiently small ε > 0,
{0 < |x0| < ε}, the neighborhood of the stationary solution, the caution-
ary component JC dominates the cost-to-go in the approximation and the
difference between the two methods are the largest.

Figure 2: cost-to-go
δ = 0.95, b̂ = −0.30, σ̂2b = 0.25, σ2ϵ = 1.0, x0 = 0
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As shown in Figure 3, in the ’tails’ of the plot of Figure 1, {0 < |x0 − 5| <
ε}, the experimentation, component JP is dominant and the two methods
tend to convergence. Actual, the cost-to-go is non-convex and has a local
minimum at ua = −4.579.

10Note that in Figure 1, that for a sufficiently small ε > 0, {0 < |x0| < ε}, the solution
for u∗

v is somewhat jagged, which is caused by the discretization and has no economic
interpretation. The same occurs for δ close to 1, causing numerical instability when
integrating the value function.
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Figure 3: cost-to-go
δ = 0.95, b̂ = −0.30, σ̂2b = 0.25, σ2ϵ = 1.0, x0 = 5
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On a more fundamental level, you see the ’local nature’ of the approxi-
mation method reflected in Figure 3. As it searches around the certainty
equivalence path, in this case the equalibrium state, the experimentation is
centered arond u = 0.

To get more insight into the nature of the differences, we lowered the dis-
count factor δ as shown in Figure 4. A lower δ means that the value of future
experimentation - learning - has a lower value and leads to less experimenta-
tion. As a consequence, the solutions are closer than in the baseline scenario.
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Figure 4: Lower discount factor δ.
δ = 0.80, b̂ = −0.30, σ̂2θ = 0.25, σ2ϵ = 1.0
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A similar effect takes place in Figure 5 and 6, in which we simulated what
happens to the policy variable if we lower and increase the noise in system
σ2ϵ . As a consequence there is less or more need for experimentation to bring
down the uncertainty in the system. Once again, the value function solu-
tion is more aggressive near the stationary point 0 than the approximation
solution.
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Figure 5: Lowering noise
δ = 0.95, b̂ = −0.30, σ̂2b = 0.25, σ2ϵ = 0.10
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Figure 6: Increasing noise
δ = 0.95, b̂ = −0.30, σ̂2b = 0.25, σ2ϵ = 2.00
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This is illustrated once more by Figures 7 and 8 where we lowered and
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increased the initial estimated variance of the parameter, σ̂2b .

Figure 7: Lowering parameter uncertainty
δ = 0.95, b̂ = −0.30, σ̂2b = 0.04, σ2ϵ = 1.0
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Figure 8: Increasing parameter uncertainty
δ = 0.95, b̂ = −0.30, σ̂2b = 0.49, σ2ϵ = 1.0
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The overall picture is that the approximation approach is a good alternative
for the value function approach as long as the uncertainty in the model is
low to modest.

5 Conclusions

Although, the above results are in line with our intuition, we need to be mod-
est. In this short paper we provided some evidence, that for the MacRae-
Beck-Wieland model, the approximation method produces a solution close
enough to the value function approach. Moreover, we have been able to
identify some elements of the model specifications which affect the difference
between the value function and the approximation solutions. Our simula-
tions indicate that when the effects of learning are limited, the differences
are small.

This is by no means a proof that approximation methods will provide re-
sults that are close to those obtainable with value function methods in larger
models. The verdict is still out on this issue and is likely to stay out in the
foreseeable future given the computational inefficiency of the value function
method and the complexity of the issue.
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