Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/319044 
Erscheinungsjahr: 
2025
Quellenangabe: 
[Journal:] Electronic Markets [ISSN:] 1422-8890 [Volume:] 35 [Issue:] 1 [Article No.:] 7 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2025
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract Given the critical role of data availability for growth and innovation in financial services, especially small and mid-sized banks lack the data volumes required to fully leverage AI advancements for enhancing fraud detection, operational efficiency, and risk management. With existing solutions facing challenges in scalability, inconsistent standards, and complex privacy regulations, we introduce a synthetic data sharing ecosystem (SynDEc) using generative AI. Employing design science research in collaboration with two banks, among them UnionBank of the Philippines, we developed and validated a synthetic data sharing ecosystem for financial institutions. The derived design principles highlight synthetic data setup, training configurations, and incentivization. Furthermore, our findings show that smaller banks benefit most from SynDEcs and our solution is viable even with limited participation. Thus, we advance data ecosystem design knowledge, show its viability for financial services, and offer practical guidance for privacy-resilient synthetic data sharing, laying groundwork for future applications of SynDEcs.
Schlagwörter: 
Synthetic data
Data sharing platform
Data ecosystem
Financial services
Data scarcity
Persistent Identifier der Erstveröffentlichung: 
Sonstige Angaben: 
M15
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.