Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/316977 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Digital Finance [ISSN:] 2524-6186 [Volume:] 6 [Issue:] 3 [Publisher:] Springer International Publishing [Place:] Cham [Year:] 2024 [Pages:] 341-377
Verlag: 
Springer International Publishing, Cham
Zusammenfassung: 
Abstract This paper introduces custom neural network techniques to the problem of latent economic factor extraction for voluminous news analytics data. In the context of macro-financial news, we derive low-dimensional representations of time series that arise in textual sentiment analyses spanning various topics. We explore three applications for compressed news sentiment data: nowcasting GDP growth, explaining asset class returns in a panel data analysis, and time series momentum investment. Our empirical study shows that nonlinear data representations based on supervised autoencoder architectures compare favorably to alternatives across all applications. In specific, we demonstrate that augmenting autoencoders with supervision tasks based on common asset class returns and market characteristics disciplines the dimension reduction and naturally supports the transparency of resulting representations. Taken together, our findings position supervised autoencoders as attractive competitor models alongside PCA and PLS approaches.
Schlagwörter: 
Neural networks
Sentiment analysis
Semi-structured data
Dimension reduction
Latent factor extraction
High-frequency macro-data
Persistent Identifier der Erstveröffentlichung: 
Sonstige Angaben: 
C45;C55;C58;C38
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.