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Abstract
This paper introduces custom neural network techniques to the problem of latent 
economic factor extraction for voluminous news analytics data. In the context of 
macro-financial news, we derive low-dimensional representations of time series 
that arise in textual sentiment analyses spanning various topics. We explore three 
applications for compressed news sentiment data: nowcasting GDP growth, 
explaining asset class returns in a panel data analysis, and time series momentum 
investment. Our empirical study shows that nonlinear data representations based 
on supervised autoencoder architectures compare favorably to alternatives across 
all applications. In specific, we demonstrate that augmenting autoencoders with 
supervision tasks based on common asset class returns and market characteristics 
disciplines the dimension reduction and naturally supports the transparency 
of resulting representations. Taken together, our findings position supervised 
autoencoders as attractive competitor models alongside PCA and PLS approaches.

Keywords  Neural networks · Sentiment analysis · Semi-structured data · Dimension 
reduction · Latent factor extraction · High-frequency macro-data

JEL Classification  C45 · C55 · C58 · C38

1  Introduction

An ever-increasing number of data vendors in finance seek to capture salient features 
of news texts like the underlying author sentiment toward economic themes. The 
use of these investment signals based on news from macroeconomic, political, and 
financial contexts has become commonplace on financial markets. Alternative data 
products typically organize the sentiment signals in layered topic taxonomies and 
hierarchies corresponding to overarching narratives. By nature, many of the topics 

 *	 Axel Groß‑Klußmann 
	 axel.gross-klussmann@quoniam.com

1	 Research Department, Quoniam Asset Management GmbH, Frankfurt am Main, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42521-024-00107-2&domain=pdf


342	 Digital Finance (2024) 6:341–377

1 3

are short-termed and scarcely correlated among each other. This poses substantial 
challenges for subsequent data analyses as the dimensionality and heterogeneity 
of the topic space across vendors and taxonomy layers becomes huge. Extant 
dimension reduction methods often yield poor results against this backdrop. While 
data compression based on the conventional PCA lacks interpretability, methods 
enforcing sparsity tend to discard large chunks of the data. However, in contrast to 
’hard’ macroeconomic data primarily observed on monthly frequencies, country-
level news sentiment data, for instance, can be aggregated to small, even intra-
daily intervals. This leads to considerable increases in the data volume available 
for training statistical models. As a result, news sentiment lends itself naturally 
to answering in how far more expressive statistical approaches scale up to the 
complexity of news data.

This paper addresses the challenge of extracting and analyzing meaningful low-
dimensional news sentiment representations for topics from macro-finance contexts. 
Our approach is inspired by macroeconomic factor models suggesting that a few 
common factors can explain the dynamics of multiple macroeconomic variables. In 
a similar way, the number of individual macro-financial topics in sentiment analyses 
is considerably larger than the number of major risks driving the markets. To capture 
complex data features in a compressed format, we aim to capitalize on the ability of 
neural networks to non-linearly encode news data in a lower dimensional space.

The pre-training of lower dimensional data representations with neural networks 
has long been known to improve the performance of subsequent supervised tasks 
(see Erhan et al. (2010)). More recently, Kelly et al. (2021) show that increasingly 
complex modeling approaches always benefit out-of-sample financial return forecast 
accuracy when optimal regularization is applied. Yet, little is known in the finance 
domain about the value of neural network-based sentiment representations employed 
in subsequent macro-financial applications like, e.g., nowcasting.

We contribute to a burgeoning literature based on harnessing financial news data 
to supplement hard macroeconomic data. Works like Calomiris and Mamaysky 
(2019), Ellingsen et al.(2022), Ter Ellen et al. (2021), and Thorsrud (2020) utilize 
monthly time series of news topics to model and forecast economic activity. 
However, these studies abstain from a distinct dimension reduction step for topics 
and instead employ statistical latent factor models highly customized to the 
problem at hand. Further, the data aggregation frequencies are monthly, thereby 
disregarding the precision and larger training data offered by higher frequencies. 
In contrast, our approach is predicated on the need for observed multi-purpose 
low-dimensional representations of daily news topic sentiment which can benefit 
multiple downstream tasks. To the best of our knowledge, we are the first to generate 
and analyze representations of macro-news sentiment obtained via custom artificial 
neural networks.

To extract economically meaningful sentiment representations, we take 
up the idea of leveraging external data as supervising variables to guide the 
data compression. The inclusion of outside data in dimension reduction is an 
established strategy to improve efficiency and interpretability of estimates of 
latent factors driving data dynamics. Prominent examples in this vein are given 
by the supervised PCA approaches proposed by Bair et  al. (2006) and Giglio 
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et  al. (2021) as well as the projected PCA of Fan et  al. (2016). In an asset 
pricing context, Bybee et  al. (2022) and Bybee et  al. (2021) bring to bear the 
instrumented PCA (IPCA, see Kelly et al. (2019)) to connect the cross-section of 
returns to news topics.

Gu et  al. (2020), Gu et  al. (2021) and Spilak and Härdle (2023) show 
that autoencoders and, more generally, feedforward neural networks can be 
successfully employed in the analysis of financial market data. Along these lines, 
our study introduces supervised autoencoder networks put forward by Le et  al. 
(2018) to the dimension reduction problem for news sentiment across multiple 
topics. We propose to add supervised learning losses based on both asset class 
returns and hard macroeconomic data to the reconstruction error loss of an 
autoencoder. Casting the dimension reduction problem in such a multi-task 
framework allows us to construct interpretable representations where individual 
dimensions correspond to major market risks. Further, blending different losses 
serves as another regularization of the complex model and can be expected to 
improve generalization.

Ultimately, we aim to answer two main questions. 

1.	 Can we establish the empirical equivalence of models employing non-linear, 
neural network-based macro-news sentiment representations and those employing 
conventional linear data compression approaches?

2.	 In how far are results obtained for neural news representations robust and stable 
across different applications?

To this end, we explore the properties of daily news sentiment representations 
in three distinct applications for a panel of seven large geographical regions. 
First, we aim to use sentiment representations to explain daily returns in three 
major asset classes—equities, fixed-income, and currencies. Second, we use the 
representations to nowcast GDP growth in the seven regions considered. Third, 
given the trading objective inherent in directional sentiment signals, we employ 
the sentiment representations in a time series momentum exercise along the lines 
of Moskowitz et al. (2012). In all applications, we consider representations from 
several competing approaches. When linearity is imposed on the data projection, 
a natural benchmark to the supervised autoencoder is the partial least-squares 
(PLS, see Wold (1966)) approach. Letting go of the reconstruction error in the 
supervised autoencoder altogether leads to supervised feedforward networks as 
competing models. In terms of exclusively unsupervised approaches, we turn to 
the PCA as benchmark. Further, upon observing sample autocorrelation in time 
series of sentiment measures, we employ recurrent neural network encoders 
which can exploit this property.

Our study shows that non-linear low-dimensional sentiment representations 
encoded by neural networks outperform linear competitors across our three 
applications. We conclude that such data representations can indeed serve as 
multi-purpose variables to be employed in various subsequent supervised tasks: 
Among the neural representations, the supervised autoencoder yields most 
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favorable results across tasks. In the context of shallow supervised autoencoders, 
we demonstrate that a pre-training based on the reconstruction loss before training 
based on all losses sacrifices little of the variance explained while improving 
both the explanatory power and the interpretability of the representations. Taken 
together, our findings position supervised autoencoders as attractive latent factor 
extraction methods for news analytics data alongside the PLS and PCA.

The remainder of the paper is organized as follows. Section  2 describes the 
underlying data sets for sentiment and hard economic data. In Sect. 3, we provide 
details on the representation learning and extraction via neural networks and 
linear projectors. Section 4 characterizes representations and outlines results for 
the three applications. Section 5 concludes.

2 � Data

2.1 � Macroeconomic data

To use macroeconomic data as supervising variables in the representation 
learning, we collect economic data from the public vendors of the OECD (https://​
stats.​oecd.​org/) and the ECB (https://​sdw.​ecb.​europa.​eu). Our data cover the 
regions Canada (CA), China (CN), Europe (EU), Japan (JP), the United Kingdom 
(UK), and the United States (US).

We exclusively retrieve real-time vintage data to avoid potential look-ahead 
biases from data revisions common in macroeconomic data. The monthly data 
vintages contain data that were available up to the specific month. Combining 
the latest vintage data per month we construct real-time economic data for the 
following variables across the regions. We include the consumer price index, the 
harmonized unemployment rates, the industrial production index, the production 
in construction index, the index of retail trade volume, the international trades in 
goods (exports, imports), as well as the broad money monetary aggregate. Except 
for the case of China, these variables are available from 01/2001 onwards.

Our data processing consists of de-trending and de-seasonalization steps. In 
the de-trending step, we divide by the 6 months trend, while the de-seasonaliza-
tion is based on dividing by the trailing mean per month. In addition, we stand-
ardize all variables. Next, to make sure all variables have the same directionality, 
we flip the sign of the unemployment variable and the broad monetary aggregate 
variable. All variables now share the same underlying economic rationale in that 
a positive value corresponds to a favorable macroeconomic environment. Finally, 
we construct compact macroeconomic factors per region by computing the first 
principal component (PC) of the variables. To avoid look-ahead biases, we chain 
together the PCs retrieved from an expanding window application of the PCA. 
To avoid arbitrarily flipping signs of the PCs, we fix the signs as discussed in 
Sect. 3.1.1. All of our macroeconomic variables have daily within-months pub-
lication time stamps. This allows us to derive daily time series of macro-factors 
from the daily time series with last observations carried forward to fill gaps.

https://stats.oecd.org/
https://stats.oecd.org/
https://sdw.ecb.europa.eu
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2.2 � Asset‑specific time series

We aim to connect news sentiment to daily asset return series. For this purpose, 
we retrieve stock index and stock index futures returns for the ASX index (AU), 
the TSE60 index (CA), the Hang Seng index (representing China), the Eurostoxx 
50 (EU), the TOPIX (JP), the FTSE 100 (UK), and the S &P 500 (US) from the 
Bloomberg data vendor. Further, we collect 10-year zero-bond yields and 10-year 
bond futures returns for the regions of interest with the exception of China. To cover 
the currency space, we retrieve FX forward returns for the free-floating currencies 
against the US dollar as quote currency. In specific, we use the crosses AUD/USD, 
CAD/USD, EUR/USD, JPY/USD, and GBP/USD. Alongside individual crosses, 
we further consider the Dollar index (DXY) measuring the generic strength of the 
US Dollar against a currency basket. All fixed-income and currency data stem from 
Refinitiv’s datastream service. To be able to encode news sentiment as it concerns 
commodities, we resort to the Refinitiv/CoreCommodity CRB Index which tracks 
a weighted basket of commodity futures.

2.3 � (Macro‑financial) news sentiment data

Sentiment analysis utilizes Natural Language Processing techniques to infer the 
positive or negative tonality from textual information. We combine news for a 
global macroeconomic context from two prominent sentiment datasets based on 
financial (Ravenpack) and general news texts (GDELT). The two datasets are chosen 
to complement each other in that the Ravenpack dataset is targeted at a finance 
customer, while the GDELT data mainly focus on politics.

First, we use data from the commercial Ravenpack global macro-package (RPA 
1.0, https://​www.​raven​pack.​com/). Each row of these data contains sentiment scores, 
time stamp, entities mentioned, and further analytics for a news article. The news 
articles are assigned to the country/region they predominantly pertain to. Two types 
of main polarity scores, each with values in [−1, 1] , are given. The Event Sentiment 
Score (ESS) is attached to news that can be traced back to the so-called news events, 
defined as major events with a quick and broad real-time coverage. The Composite 
Sentiment Score (CSS) captures sources of news that often cannot be connected to 
specific events. An example of the latter concept is given by finance-related tweets 
on the Twitter platform. The themes underlying the news are organized in a topic 
hierarchy. We consider the two topmost aggregates of themes, called ’groups’ and 
’types’. Appendix A gives an overview of the individual themes in these two aggre-
gates. Further, two relevance scores (relevance, event relevance) in [0, 1] are given to 
measure the news article’s relevance to an event as well as its relevance to the enti-
ties tagged. Our study is based on news with relevance and event relevance exceed-
ing 0.7. The threshold is chosen to avoid both discarding too many news articles 
and including too many irrelevant ones. After filtering data for the countries/regions 
(AU, CA, CN, EU, JP, UK, US), we group the data by (day, region, topic-group)—
and (day, region, and topic-type)—tuples and compute group-based averages of the 

https://www.ravenpack.com/
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two sentiment scores. This procedure yields daily country-level time series of two 
sentiments (CSS, ESS) for news topics in two hierarchies (group, type). To form the 
EU-region, we group together both the European countries of the Eurozone and the 
Eurozone country aggregate already given in the data package.

Second, we retrieve data from the open access Global Database of Events, 
Language, and Tone (GDELT, see https://​www.​gdelt​proje​ct.​org/). Similar to the 
Ravenpack product, the GDELT ’global knowledge graph’ 2.0 data gives NLP-
derived sentiment scores, time stamps, affected countries/regions, and themes 
mentioned for news articles. The data are crawled every 15  min from global 
news vendors. In our analysis, the GDELT sentiment score with values in [−1, 1] 
is based on the Loughran and McDonald (2011) dictionary (LMCD henceforth) 
which represents an established source for sentiment analysis in a financial 
context. In contrast to Ravenpack’s global macro-package, the GDELT data are 
not per se designed for a financial use case. To make the data more appropriate 
for our purposes, we require the news articles in the our GDELT dataset to touch 
economically and politically relevant themes. Our hand-selected themes for 
this purpose are described in appendix A. Ultimately, we group the data rows by 
(day, region, and theme)-tuples and compute group-based averages of the LMCD 
sentiment scores.

A combination of the two datasets after pre-processing results in daily time 
series for about 1,005 topics per region. The last data processing step consists of an 
expanding window demeaning applied to the final data frame. The data availability 
of the two sentiment datasets differs: While the RPA 1.0 data are available from 
01/01/2001, the GDELT GKG 2.0 data stream starts in 03/01/2015. When 
combining both datasets, we zero-pad all missing information.

Table  1 gives descriptive statistics of both the news sentiment and hard 
macroeconomic data. The sheer breadth of financial topics in the news data is 
reflected in the low pairwise correlation as well as the low portion of variance 
explained by the first three principal components. Together with the moderate 
autocorrelation in news sentiment series, these empirical facts motivate the search 
for sophisticated representation learners encoding the data in lower dimensionality.

Table 1   Summary statistics for hard and sentiment macro-data in case of the US. Averages given except 
for max and min and PC1 − 3 columns. PC1 − 3 gives the explained variation of the first 3 principal com-
ponents

mean std.dev. max min � AC1 AC2 AC3 PC1-3

Sent. – 0.01 0.09 1.32 – 1.09 0.06 0.19 0.11 0.09 0.13
Macro – 0.02 0.48 2.92 – 15.49 0.35 0.86 0.73 0.59 0.81

https://www.gdeltproject.org/
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3 � Methodology

In our study, we seek to compress daily sentiments for economic topics in seven 
regions (AU, CA, CN, EU, JP, UK, and US) to time series of five-dimensional 
representations each. The following subsections review unsupervised and supervised 
approaches to this problem. In the supervised setting, we focus on tasks where 
the sentiment representations are trained to explain (signs of) contemporaneous 
financial returns. The individual elements of supervised representations are based on 
the following considerations: 

1.	 Supervision with ’ rEqt  ’: One element of each representation will encode the 
region’s sentiment data, such that it pertains to the corresponding stock index 
return. The idea is to represent news that primarily explain the daily stock market 
return.

2.	 Supervision with ’ rFI
t

 ’: Another representation element is supposed to encode 
regional news sentiment concerning daily changes in yields for ten-year zero 
bonds.

3.	 Supervision with ’ Δf Macro
t

 ’: We further encode the news sentiment to relate to 
monthly changes of the first principal component (PC) of our (hard economic) 
macro-variables (see 2.1). To match the frequency of the sentiment data, the 
monthly changes of the PC are computed daily.

4.	 Supervision with ’ rFX
t

 ’: A fourth element of the representation is trained to 
capture daily news sentiment toward a day’s regional currency forward return. In 
case of the US, the dollar index return is used.

5.	 Supervision with ’ rCmdtyt  ’: To encode commodity-themed news, we utilize the 
return of the CRB commodity index for supervision.

While not exhaustive, the chosen variables provide a parsimonious yet 
comprehensive view of a day’s market environment.

3.1 � Linear dimension reduction for news sentiment

3.1.1 � Principal component analysis

A workhorse of applied statistics, the PCA can be derived based on the singular 
value decomposition (SVD) of the (n × p) data matrix X after demeaning. X is 
mapped to a lower dimensionality k < p via Xk = XWk , where Wk contains the k 
singular vectors corresponding to the k largest singular values.

A drawback of PCA implementations in empirical work lies in the fact that the 
signs of the singular value/vector pairs used for principal component construction 
are arbitrary. The SVD will often interchangeably output W

⋅i or −W
⋅i for the i th 

column of W in a rolling window application of the PCA. To align the signs of the 
principal components, we set W

⋅i ∶= −W
⋅i whenever the average of W

⋅i is negative. 
In doing so, we impose a positive average weighting of the sentiment topics in each 
PC.
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3.1.2 � Projections based on partial least squares

Similar to the PCA, the partial least-squares (PLS) algorithm by Wold (1975) 
linearly maps the data matrix to lower dimensional scores T via T = XW , where 
W is of dimension (p × j) , j < p . However, while the PCA represents a fully 
unsupervised approach to dimension reduction, PLS takes into account the 
relationship of predictors and target variables in the construction of the latent 
components T . In this sense, the PLS mechanism differs from the PCA as the PCA 
only seeks to explain the variation in X.

To project news sentiment such that each component in the final representation 
distinctly explains only one of our five financial market variables, we apply the PLS 
five times. In each run, y consists of one of the market variables and X is projected 
to one latent component. The final score T simply collects the five one-dimensional 
projections per data point.

3.2 � Encoding news sentiment with neural networks

Some of the good performance of neural networks can be traced down to their ability 
to learn strong internal representations of data features (see Erhan et  al. (2010)). 
Bengio et  al. (2013) as well as Zhuang et  al. (2015) note that particularly strong 
representations are found when label (supervision) information from multiple tasks 
can be used in the data encoding. In light of these findings, the following sections 
outline our approaches for recovering news sentiment representations from neural 
networks.

3.2.1 � Feedforward neural networks

The feedforward network can be seen as a main building block of many neural net-
work architectures (see Goodfellow et al. (2016) for details). Let a(1), ...a(M) denote 
the M hidden layers of a neural network, where each layer is comprised of dim(a(l)) 
scalar hidden units.

Our analysis of feedforward nets is centered around the last hidden layer, a(M) , 
which we take to be the representation of the sentiment topic data. Figure 1 gives 
details for our feedforward architecture where the sentiment data are encoded 
to a 5-dimensional hidden layer where each hidden unit of a(M) is connected to 
just one output. In its most general form, the output layer is ’fully connected’ to 
the last hidden layer. However, allowing for all possible connections between 
a(M) and outputs would interfere with the desired interpretability of the sentiment 
representations. To support interpretability, we instead operate in a multi-output 
setting and impose a single connection from every hidden unit in a(M) to just one 
particular univariate output variable.1

1  To give a concise description of the architecture’s layer structure in terms of dimensions, we write 
(p, [dim(a(1)), dim(a(2)), ...], dim(ŷ)) , where p is the input dimension.
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In classification tasks, training of the neural network weights, � , is based on 
minimizing the cross-entropy between training data and model distribution. Let 
yi ∈ {0, 1} be the i th output label and let t denote the example time. The cross-
entropy loss over all training examples xt is given by

where the i th component of � , and �i , is the weight of the i th supervision task.
Our specific architecture design (Fig.  1) has the following implications. First, 

only lower level layers share information on all losses. In consequence, hidden 
units of the layer of interest a(M) are predominantly characterized by their single 
relation to the single output they are connected to. Second, we could in principle 
utilize the outputs ŷ directly as representations. However, our empirical work 
shows that adding more losses and tasks directly to the output layer often results in 
worse training outcomes than attaching these losses to hidden and outcome layers 
separately. Our feedforward encoder can conveniently be expanded to include a 
reconstruction loss, for instance.

3.2.2 � (Supervised) autoencoders

Autoencoder (AE) networks are a special case of (unsupervised) feedforward 
networks trained to copy the input data to the output. In the spirit of dimension 
reduction, so-called undercomplete autoencoders are designed to learn internal 
representations with a lower dimensionality than the original input.

(1)Jce(�;�) = −
1

n

∑

t∶xt∈X

dim(a(M))∑

i=1

�i

(
yit ln p̂it + (1 − yit) ln(1 − p̂it)

)
,

Fig. 1   The architecture of an example feedforward ANN with financial market supervision losses for the 
hidden representation of interest. Blue circles denote hidden units; black lines represent weighted con-
nections of the data path through the network. Own illustration on top of blank ANN from http://​alexl​
enail.​me/​NN-​SVG/​index.​html

http://alexlenail.me/NN-SVG/index.html
http://alexlenail.me/NN-SVG/index.html
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The architecture of an undercomplete autoencoder consists first of a so-called 
encoder network, mapping the input to a lower dimensional hidden layer of 
interest, the bottleneck layer, a(k) , k < M . The bottleneck layer is followed by 
a decoder network, mapping the low-dimensional representation back to the 
output (reconstruction). Figure  2 exemplifies a standard symmetric feedforward 
architecture underlying an undercomplete autoencoder. In the depicted design, the 
feedforward encoder part consists of a mapping of the input data x to an initial 
20-dimensional hidden layer, followed by a 10-dimensional hidden layer. The output 
of the encoder is the 5-dimensional bottleneck a(k) to be extracted as the lower 
dimensional representation of the input. Next, the 5-dimensional a(k) is decoded by 
another feedforward network (decoder) to ultimately reconstruct the input as x̂ . The 
decoder’s architecture mirrors the encoder’s architecture.

Training of undercomplete autoencoders minimizes the reconstruction cost based 
on the mean squared error between input and reconstruction as

In their work on supervised autoencoders (SAE henceforth), Le et  al. (2018) 
propose to add supervision losses to the bottleneck layer of an undercomplete 

(2)Jr(�) =
1

n

�

t∶xt∈X

1

K
‖x̂t − xt‖22.

Fig. 2   The architecture of an autoencoder with supervision losses for the hidden representation of inter-
est. Arrows and text fields highlight the position of the regularizing losses. Own illustration with blank 
background ANN constructed at http://​alexl​enail.​me/​NN-​SVG/​index.​html

http://alexlenail.me/NN-SVG/index.html
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autoencoder. The bottleneck layer now produces both the input to the subsequent 
decoder and feeds an output layer where predictions ŷ are formed.

In analogy to the PLS, the two loss components of the supervised autoencoder 
promise benefits to our analysis of high-dimensional sentiment topic data. First, 
training the reconstruction loss will help to encode general underlying patterns of 
the data regardless of subsequent prediction studies. Second, training the supervision 
tasks helps to guide the encoding, such that the elements of the representation 
pertain to common financial market characteristics each.

Training of SAEs will optimize both the reconstruction cost and the cross-entropy 
losses (1). Given fixed weightings �r , � for the reconstruction loss and the cross-
entropy losses, the total cost is

As per Le et al. (2018), there are theoretical guarantees that the SAE approach yields 
superior generalization compared to training either part of the cost alone.

We study two encoder architectures of the SAE. 

1.	 SAE (FF): An SAE with feedforward encoder. This is depicted in Fig. 2.
2.	 SAE (GRU): Next to feedforward encoders, we consider recurrent neural networks 

(RNN) as encoder architecture in the SAE. RNNs like the long short-term 
memory network (LSTM) introduced in Hochreiter and Schmidhuber (1997) as 
well as the gated recurrent unit (GRU), see Chung et al. (2014), can pick up 
temporal dependence in data. Our study focuses on the GRU which shares many 
properties of the LSTM but exhibits a lower number of weights. To employ the 
GRU as encoder in the SAE, we configure its hidden state to have five dimensions. 
Visually speaking, the hidden state will serve as the bottleneck layer (’layer of 
interest’) in Fig. 2.

3.3 � Model training and specification details

3.3.1 � Artificial neural networks

The neural network models are trained via stochastic gradient descent in its ’Adam’ 
variant; see Kingma and Ba (2014). While the combination of reconstruction 
and supervision losses already introduces regularization, we make use of further 
techniques to mitigate overfitting risks.2 Based on validation set insight, we employ:

•	 Dropout, i.e., zeroing out nodes during training, with probability 0.2.
•	 Early stopping: All networks are trained for a maximum of 30 epochs, i.e., 

complete passes over the randomly shuffled data.
•	 Weight initialization: uniform.

(3)J(�) = Jce(�;�) + �r ⋅ Jr(�).

2  A validation data set reveals widely detrimental effects of L2 losses (weight decay) as well as batch 
normalization techniques. We do not consider these henceforth.
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•	 Learning rate: 0.005.
•	 Mini-batch sizes: 50.
•	 Activations: leaky ReLU.
•	 For the SAE(GRU) we use a GRU with one recurrent layer, a hidden layer size of 

5, and an input sequence length of 21 days.

Training of the supervised autoencoder poses a particular challenge in that two 
different types of losses are to be minimized. To address the problem of training 
both unsupervised and supervised losses, we follow Erhan et al. (2010) as well as 
Bengio et al. (2013) and split the training process into two phases: An unsupervised 
pre-training for some epochs (runs) will train the network based on the unsupervised 
loss alone. The subsequent supervised fine-tuning takes the pre-trained network and 
adds the supervised loss to the unsupervised loss during the last training epochs. 
We reserve the first ten epochs to train the reconstruction loss alone, while the latter 
20 epochs additionally train the cross-entropy losses. The weights of the losses for 
the SAE, i.e., the parameters �i , ( i = 1,… , 5 ), and �r in equation 3 are calibrated 
with the validation set. Upon observing little differences for grids of parameters, we 
set the parameters to yield comparable magnitudes of individual losses. This means 
�i = 0.05 for all i and �r = 10.

An important decision concerns the choice between regression and classification. 
Joint training of both a reconstruction error and several regression tasks for the 
supervised autoencoder proved challenging on the validation data set. For this 
reason, we complement the reconstruction loss of the autoencoder with classification 
losses. This is also the approach taken in Le et al. (2018). To be consistent across 
neural network models, the feedforward network is based on classification tasks, too.

3.3.2 � Linear approaches

In case of the PLS, we observed stronger validation data results for the regression 
setting compared to a PLS discriminant analysis for classification. As a direct 
consequence, the PLS is based on a regression loss.

3.4 � Experimental design

3.4.1 � Rolling window representation retrieval

We split the data into training and test sets to form time series of out-of-sample 
sentiment representations. The model training takes place in a rolling fashion every 
half year, with the first training data set given by the data between 01/01/2001 and 
06/30/2003. In each run, the training (and testing) endpoints are moved forward in 
time by half a year. We expand the training data by half a year until a maximum 
of 7 year training data is covered. The hyperparameters and architectures of our 
models are calibrated on a global validation set on the window 07/01/2003 through 
12/31/2003. Figure 3 depicts the training, validation, and testing windows used in 
our analysis. After training a model up until the end of a half year, the trained model 
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with parameters �̂(Traink) is applied to the next half year as test data. Time series 
of sentiment representations are formed via the concatenation of the model output 
on the semi-annual test data sets post the validation set, ranging from 01/01/2004 
to 12/31/2021. With training and test sets defined in Fig. 3, time series of the five-
dimensional sentiment representations are given as

The functional form f is determined by the model considered, i.e., will be a linear 
mapping for the PCA and PLS. In case of the neural networks, f outputs the hidden 
layer of interest in a chain of nonlinear transformations.

3.4.2 � Comparing models with sentiment representations

In the following, let i be the index of the representation learning approach and 
let s(i)t  denote the corresponding representation. We explore three applications for 
models employing the different representation variants. Each of the applications 
implies a distinct loss function in terms of the individual representation time series, 
Li,t ∶= L(s

(i)
t , ỹt, x̃t, ...) , where ỹt and x̃t are application-specific dependent variables 

and controls. The applications and their losses are defined as follows. 

1.	 We analyze the in-sample fits of asset return panel regressions with sentiment 
representations as regressors. Here, the squared residuals represent the loss.

2.	 We consider a performance evaluation of time series momentum investment 
strategies based on st . In this case, the loss function is taken to be the negative 
difference of a strategy’s return series to a passive benchmark return.3

3.	 Our third exercise reviews GDP growth nowcasting with sentiment 
representations. We specify the loss function as the squared forecast errors.

To tackle our first research question about the equivalence of models with vari-
ants of learned sentiment representations, we turn to the ’model confidence set’ 

(4)s
t
= f (x

t
; �̂(Train

k
)), t ∈ Test

k
, k = 0, ..., 36.

Fig. 3   The rolling window setup used in our study

3  A related loss function evaluation can be found in Aparicio and López de Prado (2018).
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(MCS) procedure of Hansen et  al. (2011). Similar to the SPA test of Hansen 
(2005), the MCS approach addresses data snooping issues (see White (2000)) 
related to multiple model comparisons. However, two advantages make the 
MCS compelling for our study. For one, the MCS procedure does not require to 
formulate benchmark models. Second, in contrast to the SPA testing, the MCS 
approach can be used for model selection.

Let the model involving the i th representation variant be identified with i. The 
MCS framework iteratively evaluates two models from our model candidate set 
M = {1, 2, 3, 4, 5} in terms of their relative loss performances dij,t ∶= Li,t − Lj,t , 
i, j ∈ M . Given a size of the test, the final MCS is defined as

Hansen et al. (2011) devise a sequence of tests which eliminate the worst model at 
each step. As a result, M∗ contains only models that have not been found inferior to 
another model and can be considered statistically equivalent.

4 � Results

Our analysis encodes the daily sentiment data into time series of five-
dimensional representations for each of the seven countries/regions (AU, CA, 
CN, EU, JP, UK, US). Table  2 gives an overview of the encoding approaches 
considered and the corresponding identifiers used henceforth. We provide 
additional details on the design of the neural networks in appendix B, which also 
contains a link to the implementation code repository.

The vectors st are created in rolling train-test splits to avoid including hind-
sight information (see Eq. (4)). Individual elements of representation vectors 
from approaches with supervision losses can be interpreted as encoding the five 
financial dimensions outlined in section 3. After characterizing the representa-
tions, we first explore their explanatory power for daily asset returns in an in-
sample regression analysis. Second, a time series momentum strategy attempts 
to exploit the forecasting power of st for investment on the daily data sam-
ple from 1/2004-12/2021. Finally, we utilize the st to nowcast quarterly GDP 

(5)M
∗ ∶= {i ∈ M ∶ �(dij,t) ≤ 0 for all j ∈ M}.

Table 2   Overview of model identifiers

Identifier Description Loss types Architecture

SAE(FF) Sup. AE; FF encoder reconstr.+class. (1005, [10, 5, 10], 1005)
FF Feedforward classifier classification (1005, [10, 5])
SAE(GRU) Sup. AE; GRU encoder reconstr.+class. (1005, [GRU[5], 10], 1005)

PLS Partial Least Squares regression -
PCA Principal Components reconstr. -
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growth. This particular analysis is based on a static train-test split where time 
series models are trained and calibrated in the quarters Q1/2004–Q4/2010 and 
evaluated on Q1/2011–Q4/2021.

4.1 � Characteristics of news sentiment representations

For ease of exposition, the following descriptive results concentrate on the the US 
region and the SAE(FF) as core architecture.

Figure  4 shows the loss evolutions as well as the training accuracies of the 
individual (US) representation components when explaining their corresponding 
target. The equivalence of the PCA to a shallow AE (see Bourlard and Kamp 
(1988)) allows to compare the reconstruction loss of the supervised AE to a 
PCA-type reconstruction loss. In specific, the first panel of Fig. 4 gives the loss 
evolution of a (1005,  [5],  1005) AE with identity activation in the bottleneck 
layer. Interestingly, we observe that the reconstruction loss of the supervised AE 
closely matches the PCA-type loss even when classification tasks are added after 
10 epochs. We conjecture that the reconstruction task still leaves enough leeway 

Fig. 4   Loss analysis of the first training run of the supervised autoencoder in the US case. Left plot: 
reconstruction loss evolution of the supervised AE vs. shallow PCA-type AE (train). Middle: accuracy 
evolution of hidden representations (train). Right: total loss evolution (train and val)

Table 3   Contemporaneous t ↔ t accuracies and correlations (in brackets) between representation ele-
ments and their targets. Averages across regions shown for the supervised AE compared to the PLS

Highest values are in bold

Eq repr. FI repr. Macro repr. Cmdty repr. FX repr.
Model

PLS 0.6 (0.24) 0.6 (0.25) 0.47 (0.19) 0.58 (0.23) 0.57 (0.37)
SAE(FF) 0.67 (0.34) 0.67 (0.33) 0.58 (0.22) 0.66 (0.33) 0.76 (0.49)
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for training the classification tasks while sacrificing little of the reconstruction 
quality.

Table 3 gives full sample accuracies and correlations of the individual elements 
of the sentiment representations for the supervised AE and PLS representations. 
For both the correlations and the accuracies, the supervised AE representations 
surpass the PLS-based representations in all market dimensions covered. This 
observation is noteworthy, given that the supervision type is different in both 
approaches: regression for PLS and classification for the supervised AE.

To give a qualitative understanding of the representation, Fig.  5 traces out the 
time series of sentiment representations for the US against the supervision target. 
We observe that the representations closely track their hard economic data theme. 
This behavior is most pronounced during large market swings.

Next to the visual inspection, we rely on the SHAP (SHapley Additive exPlana-
tions) approach put forward in Lundberg and Lee (2017) to explain the output of the 
supervised AE. SHAP has roots in cooperative game theory and gives explanations 
of model outputs based on Shapley values (Shapley (1953)). The approach casts the 
output generation of a model as a game where features act as players contributing to 
the output value. Computed in different coalitions of players, i.e., features, Shapley 
values per feature give the average contribution of a feature value to the total pre-
diction over the average prediction. The attractiveness of using Shapley values for 
model output interpretation lies in the sound theory underlying it.

Fig. 5   Final representations of the supervised AE plotted against their supervision target in the US case. 
252-day averaging applied
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The panels in Fig.  6 show the Shapley values per daily data point for the five 
sentiment representation themes in the US case. In each panel, the ten most 
important features in terms of the mean absolute Shapley value are selected. The 
SHAP results for each of the sentiment representations Eq, FI, FX, Cmdty, and 
Macro reveal that the individual representations can be traced back to sentiments for 
corresponding economic topics. While some topics occur in each representation’s 
top ten list, individual topics exclusive to a representation match its theme well: Eq. 
representation for instance draws on equity actions, revenues, and insider buying 
topics, while FI distinctively depends on treasury bill yield and credit topics. 
Naturally, the Cmdty representation exclusively loads on commodity futures and 
FX on currency guidances. Among the ten most important topics for the Macro 
representation, we find recession guidance, domestic product, as well as nationwide 
disaster topics that can be linked to the overarching theme.

SHAP also allows to assess the directional impact of features per data point on 
the output. However, in contrast to the absolute importance, the directionalities in 
general do not lend themselves to straightforward interpretations. Still, for the idi-
osyncratic factors exclusive to each representation theme, we find that higher sen-
timents correspond to a rising supervision variable. To give an example, higher 
sentiments for the commodity prices topic corresponds to a positive return in the 
commodity index. For the FI theme, our sample supports a negative correlation 

Fig. 6   Plots show SHAP contributions for ten most important (mean absolute SHAP value) features for 
individual data points. The results are given for 1000 random samples drawn from the sentiment data 
covering 01/2004-12/2021. US case shown
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between bonds and stocks, such that positive sentiments, i.e., a friendly stock market 
environment tends to coincide with rising yields. Interestingly, positive sentiments 
for topics like recession and domestic product have a negative impact on the macro-
themed representation and are thus at odds with economic rationale. We attribute 
this observation to the frequency mismatch of the supervision variable (the monthly 
hard-data macro-factor) and the daily sentiment data.

The SHAP values and weights of the ANN present an opportunity to highlight 
the effect of adding the reconstruction loss. Table  4 gives standard deviations for 
architecture variants with and without reconstruction loss. In general, we observe 
a lower variance in weights and SHAP values when adding the reconstruction loss. 
This finding indicates that the autoencoder-based regularization indeed discourages 
extreme weights and hence adds stability.

4.2 � Explaining short‑term financial market returns

In the first application, we employ the news sentiment representations in a cross-
sectional study of asset return time series. We report panel regression results for 
three dependent variables on a daily frequency covering 01/01/2004-12/31/2021: 
stock market index returns (Eq), daily 10-year government bond yield changes (FI), 
and foreign exchange forward (FXF) returns. We consider the panel of 7 regions/
countries in case of stock returns as dependent variable (AU, CA, CN, EU, UK, 
JP, US). For FXF returns, the panel reduces to 5 regions as we measure currencies 
against the US dollar as base and the Chinese Renminbi cannot be considered free-
floating in our sample. In the FI case, we drop China from the panel due to the 
impaired free tradability of its main government bonds.

The Hausman test points to a random-effects model. To also account for return 
autocorrelation, we estimate a dynamic panel regression for daily returns yit 
according to

where the error component ui captures the random heterogeneity of the i-th region 
and �it denotes the error that is random across the individual and time dimension. � , 
� , and � are lag polynomials without an order-zero term.

The regressors in Eq. (6) are defined as follows: sit stands for the sentiment rep-
resentation vector in the i th country/region. We further include control variables 

(6)yit = c + �(L)yit + �(L)�xit + �(L)�sit + ui + �it,

Table 4   Effects of the reconstruction loss regularization in terms of the standard deviation of the SHAP 
values per representation element (columns 1-5) and the standard deviation of the complete ANN 
weights (last column)

sd() Eq FI Macro Cmdty FX weights

FF Class. 2.36 2.54 2.65 2.65 2.36 47
SAE(FF) 1.80 1.66 2.61 1.41 2.18 45
GRU​ 0.12 0.07 0.03 0.10 0.10 58
SAE(GRU) 0.08 0.08 0.03 0.05 0.03 44
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Table 5   Panel regressions for Equities, FI, and FX. In the Var.Name column, rd and ry denote daily and 
annual return variables, and volm stands for monthly realized volatility estimates. sgn() is the signum 
function. The sd denote a representation element or a PC. The leftmost column ’Type’ gives the context 
of the variables. ∗∗∗ , ∗∗ , ∗ are the 1%, 5% and 10% significance levels, respectively. loglik and LB10(p) 
give the log-likelihood value and Ljung-Box statistic (lag 10)

Eq Panel: PCA PLS SAE(FF) FF Class. SAE(GRU)
Type Var.Name

Cmdty: rd,t−1 0.98∗∗∗ 0.98∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 0.97∗∗∗

rd,t−2 – 0.12 – 0.11 – 0.13 – 0.13 – 0.12
Eq: volm,t−1 10.98∗∗ 11.07∗∗ 11.03∗∗ 11.02∗∗ 10.96∗∗

volm,t−2 – 15.72∗∗ – 15.74∗∗ – 15.72∗∗ – 15.68∗∗ – 15.66∗∗

rd,t−1 2.21∗∗∗ 2.2∗∗∗ 2.22∗∗∗ 2.22∗∗∗ 2.22∗∗∗

sgn(rd,t−1) 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗

rd,t−2 0.32 0.32 0.32 0.32 0.32
sgn(rd,t−2) – 0.0 – 0.0 – 0.0 – 0.0 – 0.0
ry,t−1 -0.67∗∗∗ -0.66∗∗∗ -0.67∗∗∗ -0.67∗∗∗ -0.67∗∗∗

ry,t−2 1.15∗∗∗ 1.15∗∗∗ 1.15∗∗∗ 1.15∗∗∗ 1.15∗∗∗

FI: rd,t−1 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

rd,t−2 – 0.01 – 0.01 – 0.01 – 0.01 – 0.01
FX: rd,t−1 0.76∗∗∗ 0.77∗∗∗ 0.74∗∗∗ 0.73∗∗∗ 0.73∗∗∗

rd,t−2 – 0.03 – 0.05 – 0.06 – 0.06 – 0.04
R-Eq/PC1: sd,t−1 – 0.01 0.14∗∗∗ – 0.0 – 0.0 0.01

sd,t−2 0.01 -0.01 0.05∗∗∗ 0.03∗∗∗ 0.03∗∗

R-FI/PC2: sd,t−1 – 0.0 0.01 – 0.0 – 0.01 – 0.02∗

sd,t−2 0.01 – 0.01 0.01 0.01 0.04∗∗

R-Macro/PC3: sd,t−1 – 0.02 – 0.24∗∗ – 0.0 – 0.0 – 0.01
sd,t−2 0.02∗ – 0.04 0.0 0.0 0.01

R-Cmdty/PC4: sd,t−1 – 0.01 – 0.04 0.01 0.02∗∗ 0.03∗

sd,t−2 0.01 0.21∗∗ – 0.01 0.01 – 0.01
R-FX/PC5: sd,t−1 0.01 – 0.04 0.02 0.02∗∗ 0.03∗∗

sd,t−2 – 0.02 0.1 – 0.0 0.0 – 0.01
Stats: loglik, 

LB10(p)

(137733, 
.98)

(137761, 
.97)

(137744, 
.98)

(137750, 
.98)

(137742, .98)

FI Panel: PCA PLS SAE(FF) FF Class. SAE(GRU)
Type Var.Name

Cmdty: rd,t−1 0.03 0.03 0.03 0.03 0.0
rd,t−2 0.44 0.43 0.43 0.41 0.42

Eq: volm,t−1 24.4∗ 24.43∗ 24.27∗ 24.31∗ 24.23∗

volm,t−2 – 15.47 – 15.35 – 15.01 – 15.12 – 15.13
rd,t−1 – 0.25 – 0.26 – 0.23 – 0.24 – 0.25
rd,t−2 – 0.39 – 0.4 – 0.43 – 0.43 – 0.43
ry,t−1 – 0.96∗∗∗ – 0.96∗∗∗ – 0.96∗∗∗ – 0.96∗∗∗ – 0.96∗∗∗

ry,t−2 1.05∗∗ 1.06∗∗ 1.05∗∗ 1.05∗∗ 1.06∗∗



360	 Digital Finance (2024) 6:341–377

1 3

Table 5   (continued)

FI Panel: PCA PLS SAE(FF) FF Class. SAE(GRU)
Type Var.Name

FI: rd,t−1 2.59∗∗∗ 2.6∗∗∗ 2.6∗∗∗ 2.6∗∗∗ 2.6∗∗∗

sgn(rd,t−1) – 0.01 – 0.01 – 0.01 – 0.01 – 0.01
rd,t−2 0.59∗∗∗ 0.59∗∗∗ 0.58∗∗∗ 0.58∗∗∗ 0.58∗∗∗

sgn(rd,t−2) 0.0 0.0 0.0 0.0 0.0
FX: rd,t−1 1.45∗∗ 1.43∗ 1.25∗ 1.28∗ 1.46∗

rd,t−2 0.25 0.26 0.36 0.31 0.36
R-Eq/PC1: sd,t−1 0.01 0.24 -0.08∗ – 0.02 – 0.0

sd,t−2 -0.03 0.07 0.03 0.04 0.07
R-FI/PC2: sd,t−1 -0.06 0.04 -0.05 – 0.05∗ -0.02

sd,t−2 -0.02 0.01 0.12∗∗∗ 0.07∗∗∗ 0.14∗∗

R-Macro/PC3: sd,t−1 0.02 – 0.37 0.03 0.02 – 0.02
sd,t−2 0.04 0.2 – 0.01 – 0.02 – 0.03

R-Cmdty/PC4: sd,t−1 0.11∗∗ – 0.22 0.11∗∗ 0.05 0.1∗

sd,t−2 – 0.02 0.28 – 0.03 – 0.0 – 0.08
R-FX/PC5: sd,t−1 0.06 – 0.12 0.09∗∗ 0.06∗ 0.01

sd,t−2 0.01 0.02 -0.07∗ – 0.04 – 0.05
Stats: loglik, 

LB10(p)

(80192, 1.0) (80188, 1.0) (80199, 1.0) (80196, 1.0) (80195, 
1.0)

FX Panel: PCA PLS SAE(FF) FF Class. SAE(GRU)
Type Var.Name

Cmdty: rd,t−1 – 0.2∗∗∗ – 0.2∗∗∗ – 0.2∗∗∗ – 0.2∗∗∗ – 0.2∗∗∗

rd,t−2 0.06 0.06 0.07 0.07 0.06
Eq: volm,t−1 0.47 0.49 0.49 0.48 0.48

volm,t−2 – 0.46 – 0.48 – 0.46 – 0.45 – 0.46
rd,t−1 – 0.02 – 0.02 – 0.02 – 0.02 – 0.02
rd,t−2 – 0.03 – 0.03 – 0.03 – 0.03 – 0.03
ry,t−1 – 0.03 – 0.04 – 0.04 – 0.04 – 0.03
ry,t−2 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.11∗∗∗

FI: rd,t−1 -0.03∗∗ -0.03∗∗ -0.03∗∗ -0.03∗∗ -0.03∗∗

rd,t−2 0.01 0.01 0.01 0.01 0.01
FX: rd,t−1 2.85∗∗∗ 2.85∗∗∗ 2.83∗∗∗ 2.83∗∗∗ 2.83∗∗∗

sgn(rd,t−1) – 0.0 – 0.0 – 0.0 – 0.0 – 0.0
rd,t−2 0.97∗∗∗ 0.97∗∗∗ 0.94∗∗∗ 0.95∗∗∗ 0.96∗∗∗

sgn(rd,t−2) – 0.0 – 0.0 – 0.0 – 0.0 – 0.0
R-Eq/PC1: sd,t−1 0.01 0.04 – 0.0 – 0.01 – 0.01∗∗

sd,t−2 – 0.01 0.03 0.0 0.0 – 0.0
R-FI/PC2: sd,t−1 0.0 – 0.02∗∗ 0.01 0.01 0.01

sd,t−2 – 0.0 – 0.01 0.0 0.0 – 0.0
R-Macro/PC3: sd,t−1 – 0.0 – 0.04 – 0.01 – 0.0 0.01

sd,t−2 – 0.01 – 0.02 0.0 0.0 0.0
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xit inspired by the monthly regional panel regression in Calomiris and Mamaysky 
(2019). The control variables xit that enter our three model setups contain lags of 
the monthly realized stock market volatility as well as of the annual stock market 
returns. Further, we include lags of the dependent variable as well as signs thereof to 
control for the use of classifiers in the representation learning. However, we abstain 
from including low-frequency macro-variables like quarterly GDP growth as these 
exhibit little correlation to daily returns.

The three Tables  5 show the regression summaries for Eq, FX returns, and 
government bond yield changes (FI) as dependent variables. For each asset class, 
we report results for the inclusion of different representation variants—based on the 
PCA, the PLS, the supervised AE, the Feedforward Classifier, and the supervised 
AE with GRU encoder. All representation variables employed are constructed on 
the semi-annually held out test data sets (see subsection 3.4.1) and are hence out-of-
sample. News sentiment representations sit for the models with supervision losses 
each consist of the five interpretable dimensions, denoted ’R-Eq’, ’R-FI’, ’R-FX’, 
’R-Cmdty’, and ’R-Macro’. Results for principal components 1–5 are subsumed 
under the same rows. We constrain the lag length to three for all variables. This 
number of lags is sufficient to eliminate error autocorrelation while not restricting 
the validity of later results. For sake of brevity, the tables show only estimates for 
the first two lags of sit and xit.

Given the large time series dimension and limited number of cross-sectional units 
(large T, small N) in our study, endogeneity problems addressed by, e.g., Arellano 
and Bond (1991) tend to diminish. Hence, we abstain from a GMM estimation of 
the panel model. However, we do safeguard against potential inconsistent estimators 
arising due to omitted common effects in the cross-section. Importantly, conclusions 
of the regression are virtually unchanged when employing the common correlated 
effects estimator of Pesaran (2006). To compute standard errors we rely on a 
sandwich estimator for the covariance matrix of coefficients. In specific, we use the 
Driscoll and Kraay (1998) HAC-type estimator adapted to a panel context.

We can summarize the following findings: First, we can significantly ( � = 0.01 ) 
link major asset class returns to sentiment representations extracted from neural 
networks. In this context, the interdependence is interpretable in an economic 
sense. Focusing on the panel results for the neural network representations 

Table 5   (continued)

FX Panel: PCA PLS SAE(FF) FF Class. SAE(GRU)
Type Var.Name

R-Cmdty/PC4: sd,t−1 0.01 0.01 0.0 0.01 – 0.0
sd,t−2 0.01 – 0.0 – 0.01 – 0.0 0.0

R-FX/PC5: sd,t−1 – 0.01 – 0.01 0.01∗∗ 0.01∗∗ 0.02∗∗∗

sd,t−2 0.01∗ 0.01 0.01∗ 0.01∗∗ 0.0
Stats: loglik, 

LB10(p)

(171600, 
.99)

(171613, 
.99)

(171607, 
.99)

(171609, 
.99)

(171607, .99)

A bold-faced loglik indicates inclusion in the MCS (5%)
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(columns SAE(FF), FF Class., SAE(GRU)), we notice that stock index returns 
depend significantly positive on lagged equity-themed sentiments. Similar results, 
albeit weaker, are observed for government bond returns which can be traced 
back positively to lagged FI-themed sentiments. Regarding currency forward 
returns, we can establish a sensible significant ( � = 0.05 ) positive connection 
to FX-themed sentiment representations. Second, significant and interpretable 
interdependencies between every single one of the three asset classes and news 
sentiment representations can only be made for both supervised AE variants and 
the neural network classifier. This finding suggests that only expressive encodings 
allow to uncover the explanation power of news sentiment representations for future 
returns in all three asset classes. Third, for all asset classes, all models—as identified 
by the representation variant in the regression—are included in the MCS at 5% 
size based on the panel residuals. This establishes the statistical equivalence of the 
representation approaches when employed in the panels.

4.3 � Trend following for news sentiment representations

A long-standing popular investment strategy for futures and forwards is predicated 
on the notion that past price trends often persist. These so-called trend-following or 
time series momentum strategies look at the direction (sign) of an asset’s past return 
and take up a position of the same sign going forward. By design, such strategies 
are able to capture the momentum of markets. Moskowitz et al. (2012) and Hurst 
et  al. (2013) give an in-depth analysis of time series momentum using past price 
return data for signal construction. Given the close link between financial returns 
and news events, more and more investment strategies aim to capitalize on measures 
of news sentiment as given in semi-structured datasets. Examples in this vein are the 
investment strategies outlined in Tetlock et al. (2008), Larsen and Thorsrud (2022) 
as well as Groß-Klußmann et al. (2019).

To uncover potential economic gains, we explore basic trading strategies that 
utilize news sentiment representations as stand-alone signal.

We consider a strategy that trades stock index futures for all 7 regions or 
countries under consideration, 10-year government bond futures in all regions but 
China and currency forwards (USD as quote currency) for all regions except China. 
Every single instrument can be uniquely associated with a country/region and hence 
with a sentiment representation for that country/region. Details on the financial data 
are given in Sect. 2.2. We devise strategies for the asset classes Eq, FI and FX as 
well as an average strategy across asset classes. To keep the strategy simple while 
maximizing the effect of the signals, we impose zero transaction costs and reshuffle 
the hypothetical portfolio on a daily basis. We further require that the sentiment 
representation used for the signal of an asset class instrument is of the same theme 
(as defined at the outset of section 3): This means that the sentiment representation 
element sit for instrument i will stand for the Eq-themed representation element 
when trading stock index futures, FI-themed for government futures and FX-themed 
in case of FX forward investments. Due to the inverse relationship of yields (our 
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supervision) and bonds (the instrument), we multiply the FI-themed representation 
with -1 before signal construction.

Inspired by the trend-following signals for futures as in, e.g., Moskowitz et  al. 
(2012), we compute exponential moving averages for sentiment representations. The 
exponential moving average (EMA) filter applied to a time series of representation 
elements si,t is defined recursively as follows:

where � is a smoothing factor, 0 < 𝛼 < 1 , controlling the weight distribution. 
Further, it allows to compute the half-life HL, the time at which the decay (1 − �) 
reaches 0.5, HL = −

ln 2

ln(1−�)
 . An EMA filter is best understood in terms of the half-

life measured in days, with a low value indicating a very steep weight decay, i.e., 
most of the weight mass attached to recent observations.

Weights for the ith financial instrument are based on the lagged sign of the EMA 
of the sentiment representation. To mitigate the effect of more volatile markets, we 
further scale the weight by the inverse lagged 2 ⋅ 252 day sample standard deviation 
of the return for the instrument traded. The weights per futures or forward contract 
for portfolio formation in t − 1 are hence given by

The additional signal lag ensures that all signals are available at the end of the 
(t − 1) th trading day and autocorrelation effects are mitigated.

Finally, each strategy per asset class is an average of the individual sub-strategies 
in single instruments. The time-t investment strategy returns under zero transaction 
costs and daily end-of-day trading are given by

where ri,t,ac is the futures or forward return and Nac denotes the number of 
instruments. The ac-subscript identifies the asset class among Eq, FI, and FX. The 
cross-asset class strategy is an average of the three asset-class strategies.

Trend following strategies hold the promise of producing returns uncorrelated 
to global asset class returns. To analyze this claim, Moskowitz et  al. (2012) 
regress hypothetical strategy returns on controls like representative stock market, 
government bond, and currency rate returns. Similarly, we inspect the sign and 
significance of the intercept in the regression

where EQMKTt is the average stock index futures return for our region sample, 
GOVt is the average government bond return and FXt stands for the return of the 
dollar index (see Sect. 2.2).

(7)s̄i,t =

{
si,t0 , t = t0
𝛼si,t + (1 − 𝛼)s̄i,t−1, t > t0,

(8)wi,t−1 = sgn(s̄i,t−2)
1

�𝜎i,t−2

.

(9)rtrend
t,ac

=
1

Nac

N∑

i=1

wi,t−1,acri,t,ac,

(10)rtrend
t,ac

= � + �1EQMKTt + �2GOVt + �3FXt + �t,
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Table 6 shows information ratios, defined as the annualized return divided by the 
annualized standard standard deviation, for short-term and longer term trend-follow-
ing strategies with half-lifes ranging from 1 to 90 days. We contrast representative 
results for exponentially weighted sentiment representations from the SAE(FF) with 
results for exponentially weighted instrument returns. We can summarize the follow-
ing findings: First, we observe that news sentiment representations favor short-term 
signal constructions as information ratios are highest for EMA half-lifes between 1 
and 7 days. When pure asset returns are employed as competing signals in the EMA 
computations, only slower EMA signals with half-lifes from 30 to 90 days generate 
positive information ratios. We interpret this finding as indicative of quickly chang-
ing news environments which often obscure longer lasting narratives. Second, the 
regression results for Eq. (9) show that only the sentiment strategy produces returns 
significantly surpassing market variables (indicated by the asterisks). An inspection 

Table 6   Information ratios per half-life (’HL’) for the return-based momentum (sub-panel ’return’) as 
well as the supervised AE-based momentum (sub-panel ’SAE(FF)’). Table shows information ratios per 
asset class (Eq, FI, FX) and an equal-weighted strategy in the asset classes (eq.-wgt). ∗∗∗ , ∗∗ , ∗ (1%, 5% 
and 10%) are significance levels of the t test of significance of � in the regression (10). Maximum values 
bold-faced

Return SAE(FF)

HL eq.-wgt. Eq FI FX eq.-wgt. Eq FI FX

1 – 0.18 – 0.18 – 0.1 – 0.05 0.51∗∗∗ 0.25 ∗ 0.35 ∗ 0.31
2 – 0.25 – 0.23 – 0.1 – 0.17 0.54 ∗∗∗ 0.22∗∗ 0.32 0.44 ∗∗

3 – 0.3 – 0.24 – 0.14 – 0.24 0.46∗∗∗ 0.21∗∗ 0.25 0.37
4 – 0.28 – 0.23 – 0.11 – 0.23 0.41∗∗ 0.15∗ 0.22 0.39
5 – 0.21 – 0.13 – 0.05 – 0.3 0.42∗∗ 0.12 0.27 0.39
10 – 0.12 – 0.08 0.07 – 0.27 0.28 0.02 0.32 0.19
20 – 0.05 – 0.12 0.21 – 0.2 0.24 0.07 0.19 0.17
30 0.08 0.02 0.21 – 0.07 0.25 0.13 0.2 0.09
40 0.23 0.14 0.31 0.03 0.16 0.08 0.18 0.01
50 0.28 0.17 0.32 0.1 0.18 0.07 0.14 0.09
60 0.23 0.13 0.29 0.07 0.14 0.05 0.26 – 0.1
70 0.27 0.12 0.31 0.15 0.13 0.04 0.27 – 0.11
80 0.28 0.16 0.27 0.17 0.14 0.04 0.28 – 0.1
90 0.29 0.15 0.28 0.16 0.15 0.03 0.31 – 0.09

Table 7   Information ratios shown for competitor models in case of an strategy based on the average 
returns of the equally weighted sub-strategies for all short-term EMAs (HL 1-10) and long-term EMAs 
(HL 20-90). Bold-faced values indicate exclusion from the MCS at the 5% level

PCA PLS SAE(FF) FF Class. SAE(GRU) Return

short term − 0.16 0.26 0.48 0.63 0.47 – 0.24
long term 0.12 -0.03 0.15 0.21 0.05 0.29
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of the individual asset class strategy components (columns Eq, FX, and FI) reveals 
that effects are strongest for the shorter term stock market futures strategy (HL 1-4). 
In FI and FX, information ratios can widely be explained away by general market 
returns with the exception of two strategies at half-lifes 1 and 2. Benefitting from 
diversification, a strategy comprised of the three equally weighted asset class sub-
strategies (eq.-wgt.) attains highest information ratios and a positive � that stays sig-
nificant up to HL 5.

Table 7 gives a compact overview of the equally weighted strategy performances 
for all competing models and a pure return-based strategy. We group the half-lifes 
into two main strategies—a short-term strategy utilizing half-lifes 1–10 and a longer 
term strategy for the HL ranging from 20 to 90. The table reports information ratios 
for average returns in the half-life groups. Summing up, we notice consistently 
superior information ratios for the short-term strategy involving the neural network-
encoded sentiment representations when compared to both the linear counterparts 
(PLS, PCA) and the signals based on asset returns alone. Notably, the autoencoder-
regularized strategies (SAE(FF), SAE(GRU)) yield slightly worse short-term 
information ratios than the FF classifier. We conjecture that—absent control 
variates—this particular analysis benefits the more greedy, only mildly regularized 
FF classifier. For the long-term EMAs, the return-based strategy dominates all 
models, highlighting the short-term nature of daily news sentiment aggregates and 
representations in our setup.

To construct the model confidence set, we compute losses as the negative strategy 
returns over a passive benchmark with the same volatility. Except for the PCA 
approach, all representation variants are included in the MCS (5%), thus establishing 
the statistical equivalence of neural and PLS representations in this application.

4.4 � Nowcasting real GDP growth

The third application focuses on nowcasting real GDP growth in our region sample 
excluding China using daily news sentiment representations. Data for the real GDP 
growth rate in one quarter will gradually build up until preliminary GDP numbers 
get published at the end of the quarter. These data are often subject to revisions 
such that a final reading can take several more quarters to form. It is hence 
worthwhile for policymakers and other financial market practitioners to closely track 
macroeconomic data to get an early assessment of the real GDP growth. In this vein, 
Andreou et  al. (2013) demonstrate that exploiting daily financial data to forecast 
quarterly GDP growth is superior to using monthly and quarterly data alone. In 
terms of alternative data sources, Ellingsen et al. (2022) show that topic time series 
mined from textual news data have similar predictive power for real GDP forecasts 
as hard economic data signals.

Our study draws on the mixed-data-sampling (MIDAS) regression put forth in 
Ghysels et  al. (2007), Andreou et  al. (2010) and Andreou et  al. (2011) as well as 
the accompanying R-package (see Ghysels et  al. (2016)). MIDAS regressions are 
econometric frameworks able to effectively connect data observed on higher, e.g., 
daily data frequencies to a dependent variable observed on a lower, say quarterly, 
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frequency. The conventional approach to regressing quarterly data onto data on a 
higher frequency would be to take quarterly averages of the high-frequency data and 
use these aggregates in a time series regression. The idea behind MIDAS time series 
models is instead to aggregate the higher frequency in a data-driven way, where 
aggregation weights for each data point are parameters to be estimated alongside 
other coefficients.

In the following, let t be the time index for the main data frequency of interest, 
i.e., quarterly in case of quarterly real GDP growth forecasting. Let individual data 
points xD

i,t
 stand for a scalar element (theme) of a daily sentiment representation. The 

subscript dimensions i, t give the quarter t of the data point as well as the day i in the 
quarter. The number of days in each quarter is m. With this notation, we denote the 
data item for the last day of a quarter as xD

m,t
 and the first day in quarter t as xD

1,t
.

To leverage within-quarter information in the explanatory variables, we employ 
the augmented distributed lag (ADL) MIDAS with leads model put forward in 
Andreou et al. (2013). The ADL-MIDAS with leads constructs quarterly forecasts 
with JD ∈ {1, 2, 3} monthly blocks of data from within the quarter to be predicted. 
As such, the model can capture the gradual information build-up and give an early 
GDP growth prediction at the start of the last month in the quarter. Using the above 
notation, the ADL-MIDAS(pQ,qD,JD ) for the quarter on quarter real GDP percentage 
growth, yQt  , with daily variables xD

i,t
 is based on

where � is a lag polynomial of degree pQ without order-zero terms. The first 
bracketed sum concerns the within quarter ’leads’, given in JD blocks of monthly 
explanatory data. The second bracketed term sums up qD lags of the higher 
frequency variable taken in quarterly blocks ( ̃xQt  ). Equation (11) shows the formula 
defining the ADL-MIDAS with leads for a daily predictor variable xD

⋅,t
.

One of the main innovations in MIDAS regressions is to parsimoniously 
parameterize the aggregation of higher frequency data. In Eq. (11), the implicit 
aggregation to the quarterly x̃Qt  is based on weights w�

i
 with parameters � = {�0, �1} . 

Our weight construction uses the exponential Almon lag polynomial where i th 
weights are given as

Ghysels et  al. (2005) assert that the Almon polynomial can mimic a wide range 
of weight function shapes. The parameters � are estimated jointly with other 
coefficients, making the implicit aggregation of the ADL-MIDAS data-driven.

(11)

y
Q

t+1
= 𝜇 + 𝛼(L)y

Q

t+1
+ 𝛽

[
m−1∑

i=(3−JD)⋅m∕3

w�
i−m

xD
m−i,t+1

+

qD−1∑

j=0

m−1∑

i=0

w�
i+j⋅m

xD
m−i,t−j

�������������������

x̃
Q

t−j

] + 𝜀t+1,

(12)wi(�0, �1) =
exp(�0i + �1i

2)
∑m

k=1
exp(�0k + �1k

2)
.
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In the application of the ADL-MIDAS model, we follow Andreou et al. (2013) 
who estimate single predictor models where the external higher frequency predictor 
variable x

⋅,⋅ is one-dimensional. The final forecast will be formed by a a combination 
of single predictor model forecasts. The reasons for this approach are twofold and 
rooted in the analysis of Timmermann (2006). First, in a survey of forecast combina-
tion methods, the author demonstrates that forecast combinations typically improve 
forecast accuracy. Second, and relatedly, forecast combinations tend to be robust 
toward regime changes and other model instabilities.

Our single predictor ADL-MIDAS models are each based on one of the five 
(economically themed) representations we recover from our model variants, i.e., 
xD
⋅,⋅
≡ si,t . Let now denote ŶQ

i,t+1
 the forecasts of the quarterly GDP growth in t + 1 

from a single predictor ADL-MIDAS. We compute the combined forecast for each 
model variant based on its five single predictor forecasts according to

where the weights �i,t are computed with the discounted mean squared forecast error 
(MSFE) method. The discounted MSFE method assigns weights that are inversely 
proportional to the square of the MSFE, where a discount factor smoothes the 

(13)Ŷ
Q

t+1
=

5∑

i=1

�i,tŶ
Q

i,t+1
,

Table 8   Values are percentage 
fractions of the RMSE of the 
AR(1)-benchmark. Values for 
the sample up to the COVID-
19 pandemic given in the last 
column

Bold-faced values indicate model instances that are excluded from 
the MCS at the 5% level

Region Q1/2011 - 
Q4/2021

Q1/2011 - 
Q4/2019

US SAE(FF) 0.512 0.904
FF Classifier 0.528 0.988
SAE(GRU) 0.546 1.005
PLS 0.554 0.946
PCA (sentiment) 0.574 1.095
PCA (Macro Var.) 0.939 1.185

EU SAE(FF) 0.637 0.882
FF Classifier 0.646 1.043
SAE(GRU) 0.578 0.997
PLS 0.89 1.171
PCA (sentiment) 0.63 1.063
PCA (Macro Var.) 0.914 1.184

All SAE(FF) 0.634 0.951
(Av.) FF Classifier 0.647 1

SAE(GRU) 0.639 1.001
PLS 0.691 1.441
PCA (sentiment) 0.646 1.153
PCA (Macro Var.) 0.947 1.121
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weights by giving greater weight to more recent inverse squared forecast errors. A 
detailed overview of the discounted MSFE method can be found in appendix C.

We estimate the single-predictor ADL-MIDAS (11) on the sample spanning 
Q1/2004 to Q4/2010 and subsequently compute one-quarter-ahead forecast 
combinations. To separate out the large effect of the COVID-19 pandemic on the 
macroeconomic data, we present forecast results for two out-of-sample periods, 
Q1/2011 to Q4/2021 as well as Q1/2011 to Q4/2019. Using the AIC criterion, we 
select an ADL-MIDAS(pQ=1,qD=0,JD=1)-specification for the ADL-MIDAS with 
daily predictors. This means the first 2 months of daily data in the current quarter to 
be predicted enter the equation.

Each row of Table 8 describes forecast results from a model average of the single-
predictor ADL-MIDAS based on one specific five-dimensional sentiment 
representation. Next to our sentiment representations, we additionally include the 
first five PCs derived from a rolling PCA applied to our macroeconomic variables 
(denoted Macro Var.) as classical nowcasting predictors. In spirit of the nowcasting 
literature (see, e.g., Andreou et al. (2013)), we use an AR(1) model as benchmark. 
All numbers are the RMSE fractions against the AR(1), RMSE(model)

RMSE(AR(1))
 . For sake of 

brevity, Table 8 gives results for the two regions US and EU as well as an average of 
all regions. The appendix table 9 contains results for the remaining regions.

We can summarize the following findings. First, forecast errors for ANN-based 
representations are widely lower than for linear benchmarks across the board. 
However, the model confidence set approach applied to the squared forecast errors 
shows that models are equivalent on the full sample. An exception is the sample 
excluding the COVID-19 period. In this case, only neural network representations 
enter the MCS in all regions shown, thus highlighting the usefulness of the 
approaches. Second, in line with findings of Andreou et  al. (2013), we observe 
an improvement in the RMSE when daily predictors are employed over both the 
benchmark. Notably, the nowcasts from daily sentiment representations capture the 
COVID-19 pandemic well as the low RMSE fractions for the sample including the 
COVID-19 pandemic show. Third, remarkably, prior to COVID-19, on average, only 
MIDAS regressions employing sentiment representations from the SAE(FF) produce 
errors lower than the AR(1) benchmark. The success of the SAE(FF) supports the 
theoretical assertion in Le et al. (2018) that a combination of the reconstruction and 
supervision loss results in a more robust generalization to unseen tasks.

5 � Conclusions

News analytics data like time series of sentiment measures cover a vast range of 
financial topics potentially relevant to the markets. Hence, compressing these high-
dimensional data for subsequent use is of utmost importance. Neural networks have 
long been known to learn expressive and compact internal data representations in 
their hidden layers. In appreciation of this, our study leverages the flexibility offered 
by neural networks to obtain interpretable multi-purpose data representations that 
generalize well. At the core of our analysis is a supervised autoencoder architecture 
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which blends the standard reconstruction loss with financial market-inspired 
supervision losses in a multi-task setting.

We consider two data sets of daily news sentiment scores for more than 1,000 
topics with mostly macroeconomic themes. After extracting low-dimensional hidden 
representations from neural networks and linear competitor models, we include the 
sentiment representations in three distinct macro-financial applications. In response 
to the two research questions raised, our analysis shows that models with neural 
network-derived sentiment representations are statistically at least equal to models 
employing the PLS- or PCA-based representations. Notably, the performances of 
the SAE(FF) variant in particular are stable across all applications and country/
regions considered. In more detail, the following findings can be summarized. 
First, in three panel regressions explaining daily regional stock index returns, 
currency forward returns, as well as government bond yield changes, we observe 
that only representations based on neural networks significantly add explanatory 
power beyond controls. Remarkably, this finding is robust across all three asset 
classes considered. The analysis highlights the merits of interpretability as asset 
class returns can be traced back to elements of the neural sentiment representations 
that match the asset class theme. Second, when employed as signals in short-term 
time series momentum investment strategies, our neural network-based sentiment 
representations attain higher risk adjusted returns than both representations from 
linear competitor models and plain returns. Third, an MIDAS nowcasting exercise 
confirms the favorable properties of neural sentiment representations. Despite being 
trained mainly with short-term return supervisions, the representations generalize 
well to the problem of forecasting quarterly real GDP growth.

Overall, the results show that the most balanced architecture choice is an 
autoencoder with additional supervision losses based on important financial market 
metrics like asset class returns. Several features make this model particularly 
attractive: One, the supervision losses act as regularizers and discipline the 
dimension reduction by leveraging external data. This is a direct consequence of 
the multi-task approach which prevents a too strong focus on just one optimization 
objective in training. The inclusion of multiple losses allows to aim at constructing 
’general purpose’ representations that generalize beyond single use cases. Two, in 
a rolling window setting, directionality in X can naturally be preserved by adding a 
supervision via the direction in y. Relatedly, the added finance-themed supervisions 
improve interpretability of their representation counterparts. Three, the architecture 
can be conveniently modified and scale up to complex data characteristics. While 
our applications favor a shallow feedforward network underlying the autoencoder, 
the FF encoder can optionally be replaced by an RNN to account for temporal 
dependence in data.
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Appendix A: Topics

A.1 Ravenpack Global Macro Sentiment Dataset

The Ravenpack RPA 1.0 sentiment data provide two distinct sentiment measures. 
First, an event sentiment score (ESS) is designed to capture news that can be traced 
back to events. The events are identified by the system based on external data and 
internal algorithms. An example for an event is the publication of a GDP data 
surprise which typically triggers heavy news flow. Second, a composite sentiment 
score (CSS) is comprised of sentiment measures for more general news that cannot 
be attributed to specific events. The following topics hence each yield two time 
series of scores corresponding to the ESS and CSS.

GROUP-subclass
acquisitions-mergers, aid, assets, balance-of-payments, bankruptcy, business-

activity, civil-unrest, commodity-prices, consumption, corporate-responsibility, 
credit, credit-ratings, crime, domestic-product, earnings, economic-union, elections, 
employment, equity-actions, exploration, foreign-exchange, foreign-relations, 
government, health, housing, industrial-accidents, insider-trading, interest-rates, 
inventory, labor-issues, legal, marketing, migration, natural-disasters, partnerships, 
pollution, production, products-services, public-finance, public-opinion, regulatory, 
revenues, security, social-relations, taxes, technical-analysis, transportation, 
war-conflict

TYPE-subclass
accelerated-approval-application, accelerated-approval-designation, acquisition, 

acquisition-bid, acquisition-regulation, air-pollution, aircraft-accident, airspace-
closure, airspace-open, airspace-violation, animal-attack, animal-infestation, 
antitrust-investigation, antitrust-settlement, antitrust-suit, appeal, approval-rating, 
assassination, asylum, austerity-measures, automobile-accident, avalanche, award, 
balance-of-payments, balance-of-payments-deficit, balance-of-payments-guidance, 
bankruptcy, bankruptcy-unit, blackmail, blizzard, board-member-appointment, 
board-member-death, board-member-firing, board-member-health, board-member-
resignation, board-member-retirement, board-member-salary, bombing, border-
control, breakthrough-therapy-application, breakthrough-therapy-designation, 
business-confidence, business-confidence-guidance, business-contract, buybacks, 
cabinet, campaign-ad, candidacy, capital-punishment, central-bank-meeting, 
central-bank-meeting-minutes, civil-unrest, clinical-trials, clinical-trials-patient-
enrollment, cold-wave, commodity-assets, commodity-futures, commodity-price, 
competition, composite-pmi, composite-pmi-guidance, conference, confidentiality-
pact, congressional-testimony, construction-pmi, consumer-confidence, consumer-
confidence-guidance, consumer-price-index, consumer-price-index-guidance, 
consumer-spending, consumer-spending-guidance, copyright-infringement, 
corporation-tax, corporation-tax-guidance, corruption, coup-d-etat, credit-
rating-change, credit-rating-outlook, credit-rating-watch, currency-adoption, 
currency-adoption-guidance, currency-guidance, currency-rate, currency-
valuation, current-account, current-account-deficit, current-account-guidance, 
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current-account-guidance-deficit, current-account-surplus, cyber-attacks, cyclone, 
dam-accident, defamation, defense-budget, defense-budget-guidance, deflation, 
deflation-guidance, demand, demand-guidance, diplomatic-recall, diplomatic-visit, 
discrimination, divorce, donation, drilling, drought, durable-goods, durable-goods-
guidance, early-election, earnings, earnings-estimate, earnings-per-share-guidance, 
earthquake, economic-growth, economic-growth-guidance, economic-union-
application, economic-union-membership, economic-union-withdrawal, elections, 
embargo, embargo-guidance, embezzlement, emergency-landing, employment, 
employment-guidance, endorsement, epidemic, evacuation, exchange-compliance, 
exchange-noncompliance, executive-appointment, executive-compensation, 
executive-death, executive-firing, executive-health, executive-incentives, executive-
resignation, executive-retirement, executive-salary, executive-scandal, executive-
search, expenses, explosion, export-tax, export-tax-guidance, exports, exports-
guidance, facility, facility-accident, factory-accident, fast-track-application, 
fast-track-designation, flood, force-majeure, fraud, freight-transport-accident, 
going-private, government-administration, government-bailout, government-
budget, government-budget-deficit, government-budget-guidance, government-
budget-guidance-deficit, government-budget-guidance-surplus, government-
budget-surplus, government-contract, government-official, government-power, 
government-treaty, grant, gross-domestic-product, gross-domestic-product-
guidance, hail-storm, headquarters-change, heat-wave, hijacking, hirings, home-
sales-existing, home-sales-existing-guidance, home-sales-new, home-sales-new-
guidance, hostage-situation, house-prices, house-prices-guidance, human-stampede, 
hurricane, ice-storm, immigration, impeachment, import-tax, import-tax-guidance, 
imports, imports-guidance, industrial-production, industrial-production-guidance, 
inflation, inflation-guidance, initial-public-offering, initial-public-offering-
issuance, initial-public-offering-lock-up, initial-public-offering-price, initial-
public-offering-unit, insider-buy, insider-gift, insider-sell, insider-surrender, 
insider-trading-lawsuit, interest-rate, interest-rate-guidance, interest-rate-overnight, 
interest-rate-overnight-guidance, international-aid, inventories, inventories-
guidance, investment, ipo-regulatory-approval, ipo-regulatory-scrutiny, jobless-
claims, jobless-claims-guidance, joint-venture, judiciary, kidnapping, landslide, 
law-enforcement, layoffs, legal-issues, legislative, legislature, loan, manufacturing-
index, manufacturing-index-guidance, manufacturing-pmi, manufacturing-pmi-
guidance, market-entry, market-exit, market-guidance, market-share, marriage, 
merger, merger-regulation, military-action, mine-accident, minimum-wage, 
minimum-wage-guidance, monarchy, monsoon, murder, non-farm-payrolls, 
non-farm-payrolls-guidance, non-manufacturing-pmi, non-manufacturing-pmi-
guidance, official-visit, orphan-drug-application, orphan-drug-designation, 
pandemic, partnership, party-nomination, patent, patent-infringement, peace-
process, pipeline-accident, pipeline-bombing, piracy, platform-accident, political-
campaign, political-endorsement, poll-survey, polls, power-outage, power-plant-
accident, presidency, press-conference, primary-election, primary-election-polls, 
primary-elections, priority-review-application, priority-review-designation, 
private-credit, producer-price-index, producer-price-index-guidance, product-
catastrophe, product-development, product-discontinued, product-enhancement, 
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product-fault, product-outage, product-pricing, product-promotion, product-recall, 
product-release, product-resumed, product-review, product-side-effects, product-
support, project-abandoned, protest, public-offering, public-transport-accident, 
real-gross-domestic-product, real-gross-domestic-product-guidance, recession, 
recession-guidance, referendum, refinery-accident, regulatory-investigation, 
regulatory-product-application, regulatory-product-approval, regulatory-product-
review, regulatory-product-warning, regulatory-stress-test, relative-strength-index, 
reorganization, reorganization-unit, resource-discovery, retail-sales, retail-sales-
guidance, revenue, revenue-estimate, revenue-guidance, revenue-volume, robbery, 
same-store-sales, same-store-sales-guidance, sanctions, sanctions-guidance, sand-
storm, sell-registration, services-pmi, services-pmi-guidance, settlement, shooting, 
short-selling-ban, sink-hole, snow-storm, solar-flare, sovereign-debt, sovereign-debt-
guidance, sovereign-debt-purchases, sovereign-debt-purchases-guidance, spill, spin-
off, sponsorship, stagflation, stagflation-guidance, stagnation, stagnation-guidance, 
state-of-emergency, state-visit, storm, suicide, suicide-bombing, supply, supply-
guidance, tanker-accident, tax-break, tax-break-guidance, tax-evasion, technical-
price-level, technical-view, terrorism, thunder-storm, tornado, trade-balance, 
trade-balance-deficit, trade-balance-guidance, trade-balance-guidance-deficit, trade-
balance-surplus, trading, transportation-disruption, travel-warning, treasury-bill-
auction, treasury-bill-yield, treasury-bond-auction, treasury-bond-price, treasury-
bond-yield, treasury-note-auction, treasury-note-yield, tropical-storm, tsunami, 
typhoon, unemployment, unemployment-guidance, union-pact, unit-acquisition, 
unit-acquisition-regulation, vandalism, verdict, violence, volcanic-ash-cloud, 
volcanic-eruption, war-declaration, war-demonstration, water-contamination, water-
shortage, weapons-testing, wild-fire, workers-strike, workforce-salary

A.2 GDELT economic topics

agriculture, alliance, armedconflict, austerity, capital markets, central bank, 
competition, conflict, consumption, corruption, cost, crisis agg, currencies, 
currencies agg, currency, currency exchange rate, debt, debt agg, deflation, 
democracy, determinants of econ growth, earningsreport, econ bankruptcy, econ 
budget deficit, econ cost of living, econ counterfeitmoney, econ currency reserves, 
econ cutoutlook, econ debt, econ deregulation, econ dieselprice, econ earningsreport, 
econ electricaldemand, econ electricalgrid, econ electricalprice, econ emergingecon, 
econ foreignbanks, econ foreigninvest, econ gasolineprice, econ goldprice, econ 
growth analytics, econ growth policy, econ heatingoil, econ heatingoilprice, econ 
housing prices, econ inflation, econ natgasprice, econ nationalize, econ oilprice, 
econ pay cuts, econ pricecontrol, econ propane, econ propaneprice, econ sovereign 
debt, econ stockmarket, econ suspicious activity report, econ transport cost, econ 
workingclass, economic crisis, economic growth, economic growth agg, election, 
emergingecon, euro, fi agg, finance and growth, fiscal policy, fuelprice, growth, 
human capital, inclusive growth, industrial accident, industry policy, inflation, 
infrastructure and growth, innovation and growth, insurgency, interest rates, jobless 
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growth, kill, labor intensive growth, labor markets, labor markets agg, leader, 
macroeconomic, military, monetary policy, monetary policy agg, negotiations, 
politics, poverty, price agg, prices, protest, public finance, public finance agg, 
rebellion, relevant currencies, resignation, sanctions, science, shocks, stockmarket 
agg, strike, terror, unemployment, us dollar, wb capital markets, wb industry policy 
and real sectors, wb labor markets, wb manufacturing, wb public finance, world 
currencies

Appendix B: Neural network setup: details and code repository

The code for the Pytorch (Paszke et  al. (2019)) implementation of the neural 
networks can be found at

https://​github.​com/​agk18/​newsr​epres​entat​ions.
SAE(FF). In our model validation exercise, the supervised autoencoder favors a 

rather shallow network structure. We consider a grid of several specifications

with l1 from {10, 20, 30} and an optional layer l2 ∈ {30, 40, 50}.
The dev set results point to a [1005, [10, 5, 10], 1005]-architecture which is used 

in the results section.
FF. For comparison reasons, we report the feedforward network for an 

architecture that mirrors the encoder part of the SAE(FF), i.e., [1005, [10], 5].
SAE(GRU). recurrent layers: 1
hidden size: 5
input sequence length: 21.
The fixed input sequence length equals 1 month of trading days and is sufficient 

to pick up the sample autocorrelation.

Appendix C: The discounted MSFE forecast averaging

The discounted MSFE forecast averaging (DMSFE henceforth) computes weighted 
averages across M individual forecasts

where the wi,t are the forecast combination weights formed at t. The weights for the 
i th forecast are computed according to

[1005, [l2, l1, 5, l1, l2], 1005]

(C.1)Ŷ
Q

t+1
=

M∑

i=1

wi,tŶ
Q

i,t+1
,

(C.2)wi,t =
(�−1

i,t
)�

∑n

j=1
(�−1

j,t
)�
,

https://github.com/agk18/newsrepresentations
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with �i,t denoting the trailing sum of squared foreccast errors

where � = 2 and � = 0.9 . T0 is the point at which the first (pseudo) out-of-sample 
forecast is computed. Hence, the DMSFE attaches highest weights to the forecasts 
with lowest trailing sum of squared foreccast errors.

Appendix D: Nowcasting GDP growth: details for additional countries

(C.3)�i,t =

t−1∑

�=T0

�
t−1−�(Y

Q

�+1
− Ŷ

Q

i,�+1
)2,

Table 9   Values are percentage 
fractions of the RMSE of the 
AR(1)-benchmark. Lowest 
fractions (i.e., lowest RMSEs) 
bold-faced. Values for the 
regime up to the COVID-
19 pandemic given in extra 
columns

region Q1/2011 - 
Q4/2021

Q1/2011 - 
Q4/2019

AU SAE(FF) 0.995 1.203
FF Classifier 1.057 1.281
SAE(GRU) 0.968 1.272
PLS 0.997 1.368
PCA (sentiment) 1.004 1.37
PCA (Macro Var.) 1.008 1.307

CA SAE(FF) 0.547 0.847
FF Classifier 0.553 �.���

SAE(GRU) 0.562 0.973
PLS 0.552 0.869
PCA (sentiment) 0.543 1.322
PCA (Macro Var.) 0.941 0.958

GB SAE(FF) 0.384 0.856
FF Classifier 0.377 0.928
SAE(GRU) 0.385 0.855
PLS 0.388 0.761
PCA (sentiment) 0.388 0.939
PCA (Macro Var.) 0.928 1.069

JP SAE(FF) 0.729 1.015
FF Classifier 0.722 0.945
SAE(GRU) 0.794 0.907
PLS 0.768 3.531
PCA (sentiment) 0.74 1.125
PCA (Macro Var.) 0.955 1.021
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Data availability  The core alternative sentiment data that support the findings of this study are available 
from the GDELT project and the Ravenpack company. While the GDELT dataset is free to use, restric-
tions apply to the availability of the data from Ravenpack, which were used under license for the current 
study, and so are not publicly available. Macroeconomic time series from the OECD and the ECB are 
publicly available. As regards the financial market data, restrictions also apply to the data from Bloomb-
erg and Refinitiv. Free supporting data alternatives are available from the author upon reasonable request. 
A curated example data set is already provided alongside the code repository.
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