Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315870 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Customer Needs and Solutions [ISSN:] 2196-2928 [Volume:] 11 [Issue:] 1 [Article No.:] 3 [Publisher:] Springer US [Place:] New York [Year:] 2024
Verlag: 
Springer US, New York
Zusammenfassung: 
Abstract In the rapidly advancing age of Generative AI, Large Language Models (LLMs) such as ChatGPT stand at the forefront of disrupting marketing practice and research. This paper presents a comprehensive exploration of LLMs’ proficiency in sentiment analysis, a core task in marketing research for understanding consumer emotions, opinions, and perceptions. We benchmark the performance of three state-of-the-art LLMs, i.e., GPT-3.5, GPT-4, and Llama 2, against established, high-performing transfer learning models. Despite their zero-shot nature, our research reveals that LLMs can not only compete with but in some cases also surpass traditional transfer learning methods in terms of sentiment classification accuracy. We investigate the influence of textual data characteristics and analytical procedures on classification accuracy, shedding light on how data origin, text complexity, and prompting techniques impact LLM performance. We find that linguistic features such as the presence of lengthy, content-laden words improve classification performance, while other features such as single-sentence reviews and less structured social media text documents reduce performance. Further, we explore the explainability of sentiment classifications generated by LLMs. The findings indicate that LLMs, especially Llama 2, offer remarkable classification explanations, highlighting their advanced human-like reasoning capabilities. Collectively, this paper enriches the current understanding of sentiment analysis, providing valuable insights and guidance for the selection of suitable methods by marketing researchers and practitioners in the age of Generative AI.
Schlagwörter: 
Generative AI
Large language models
Sentiment analysis
Machine learning
Digital marketing
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.