Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315311 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Journal of Intelligent Manufacturing [ISSN:] 1572-8145 [Volume:] 35 [Issue:] 8 [Publisher:] Springer US [Place:] New York, NY [Year:] 2024 [Pages:] 3917-3936
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
Manufacturing systems are undergoing systematic change facing the trade-off between the customer's needs and the economic and ecological pressure. Especially assembly systems must be more flexible due to many product generations or unpredictable material and demand fluctuations. As a solution line-less mobile assembly systems implement flexible job routes through movable multi-purpose resources and flexible transportation systems. Moreover, a completely reactive rearrangeable layout with mobile resources enables reconfigurations without interrupting production. A scheduling that can handle the complexity of dynamic events is necessary to plan job routes and control transportation in such an assembly system. Conventional approaches for this control task require exponentially rising computational capacities with increasing problem sizes. Therefore, the contribution of this work is an algorithm to dynamically solve the integrated problem of layout optimization and scheduling in line-less mobile assembly systems. The proposed multi agent deep reinforcement learning algorithm uses proximal policy optimization and consists of a decoder and encoder, allowing for various-sized system state descriptions. A simulation study shows that the proposed algorithm performs better in 78% of the scenarios compared to a random agent regarding the makespan optimization objective. This allows for adaptive optimization of line-less mobile assembly systems that can face global challenges.
Schlagwörter: 
Production control
Production scheduling
Layout optimization
Multi-agent deep reinforcement learning
Proximal policy optimization
Mobile resources
Flexible assembly
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.