Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/315082 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] 4OR [ISSN:] 1614-2411 [Volume:] 22 [Issue:] 3 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2024 [Pages:] 313-349
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
This article elaborates on the connection between multiple criteria decision aiding (MCDA) and preference learning (PL), two research fields with different roots and developed in different communities. It complements the first part of the paper, in which we started with a review of MCDA. In this part, a similar review will be given for PL, followed by a systematic comparison of both methodologies, as well as an overview of existing work on combining PL and MCDA. Our main goal is to stimulate further research at the junction of these two methodologies.
Schlagwörter: 
Preference learning
Preference modelling
Multiple criteria decision aiding
Multiple criteria decision making
Machine learning
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.