Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314987 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Statistical Papers [ISSN:] 1613-9798 [Volume:] 65 [Issue:] 9 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 5409-5445
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract For a sample X1,X2,…XNof independent identically distributed copies of a log-logistically distributed random variable X the maximum likelihood estimation is analysed in detail if a left-truncation point xL>0is introduced. Due to scaling properties it is sufficient to investigate the case xL=1. Here the corresponding maximum likelihood equations for a normalised sample (i.e. a sample divided by xL) do not always possess a solution. A simple criterion guarantees the existence of a solution: Let E(·)denote the expectation induced by the normalised sample and denote by β0=E(lnX)-1, the inverse value of expectation of the logarithm of the sampled random variable X (which is greater than xL=1). If this value β0is bigger than a certain positive number βCthen a solution of the maximum likelihood equation exists. Here the number βCis the unique solution of a moment equation, E(X-βC)=12. In the case of existence a profile likelihood function can be constructed and the optimisation problem is reduced to one dimension leading to a robust numerical algorithm. When the maximum likelihood equations do not admit a solution for certain data samples, it is shown that the Pareto distribution is the L1-limit of the degenerated left-truncated log-logistic distribution, where L1(R+)is the usual Banach space of functions whose absolute value is Lebesgue-integrable. A large sample analysis showing consistency and asymptotic normality complements our analysis. Finally, two applications to real world data are presented.
Schlagwörter: 
Log-logistic distibution
Truncated distributions
Maximum likelihood estimation
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.