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Markus Kreer1 · Ayşe Kızılersü2 · Jake Guscott2 ·
Lukas Christopher Schmitz3 · Anthony W. Thomas2

Received: 27 October 2022 / Revised: 29 July 2024 / Published online: 10 September 2024
© The Author(s) 2024

Abstract
For a sample X1, X2, . . . XN of independent identically distributed copies of a log-
logistically distributed random variable X the maximum likelihood estimation is
analysed in detail if a left-truncation point xL > 0 is introduced. Due to scaling
properties it is sufficient to investigate the case xL = 1. Here the corresponding max-
imum likelihood equations for a normalised sample (i.e. a sample divided by xL ) do
not always possess a solution. A simple criterion guarantees the existence of a solu-
tion: Let E(·) denote the expectation induced by the normalised sample and denote by
β0 = E(ln X)−1, the inverse value of expectation of the logarithm of the sampled ran-
dom variable X (which is greater than xL = 1). If this value β0 is bigger than a certain
positive number βC then a solution of the maximum likelihood equation exists. Here
the number βC is the unique solution of a moment equation, E(X−βC ) = 1

2 . In the
case of existence a profile likelihood function can be constructed and the optimisation
problem is reduced to one dimension leading to a robust numerical algorithm. When
the maximum likelihood equations do not admit a solution for certain data samples, it
is shown that the Pareto distribution is the L1-limit of the degenerated left-truncated
log-logistic distribution, where L1(R+) is the usual Banach space of functions whose
absolute value is Lebesgue-integrable. A large sample analysis showing consistency
and asymptotic normality complements our analysis. Finally, two applications to real
world data are presented.
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5410 M. Kreer et al.

1 Preliminaries

The log-logistic distribution, also known as the Fisk distribution, has been popular
in the econometric community since the early 1960s because of its better descrip-
tion of income distributions Fisk (1961), compared with the Pareto distribution. On
the other hand, hydrologists in the late 1980s suggested that log-logistic distributions
were useful for modelling Canadian precipitation data Shoukri et al. (1988), or flood
frequencies in Scotland for annual floodmaximaAhmad et al. (1988). The log-logistic
distribution is related to the logistic distribution by a logarithmic transform. Practi-
tioners make use of log-logistic distributions because of their easy calculability and
closed form expressions for both cumulative probability distribution (cdf) and proba-
bility density function (pdf) Reath et al. (2018), He et al. (2020). For x > 0 the pdf
and cdf for the log-logistic distributions are given by

f (x |α, β) = β

α

( x
α

)β−1 1[
1 + (x/α)β

]2 ,

F(x |α, β) = 1

1 + (x/α)−β
,

where α > 0 is the scale parameter and β > 0 the shape parameter. We can recover
the Pareto distribution for the tail by expanding the cdf for “large” arguments, x � α,
up to the first order in x/α, F(x) � 1 − (x/α)−β .

In the analysis of annual flood maxima, the log-logistic distribution in
Ahmad et al. (1988) was modified by the introduction of a threshold parameter for
practical reasons: a flood maximum in a rainy country like Scotland should always
be above a certain threshold level. In this paper we pursue a different approach: we
keep the two-parameter distribution but introduce a fixed left-truncation point xL > 0
instead. Thus, we have for x ≥ xL , the left-truncated log-logistic pdf and cdf respec-
tively as [see also Kendall and Stuart (1979), Cohen (1991), Guscott (2018)]

fLT (x |α, β; xL ) =
(
1 +

( xL
α

)β
)

β

α

( x
α

)β−1 1[
1 + ( x

α

)β]2 , (1)

FLT (x |α, β; xL ) =
( x

α

)β − ( xL
α

)β

1 + ( x
α

)β , (2)

where the subscript “LT” stands for “left-truncated”. If a random variable X is
log-logistically distributed with positive parameters α, β and left-truncation xL we
can denote X ∼ LL(α, β; xL). Using Eq. (2) we generate a random variable
X ∼ LL(α, β; xL) from a uniformly distributed random variable U in the interval
(0, 1), namely

X =
(

αβU + xβ
L

1 −U

)1/β

= α

(
U + η

1 −U

)1/β

, (3)
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Maximum likelihood estimation... 5411

where η = (xL/α)β .
When probability distributions are truncated, some interesting effects can happen.

Castillo in del Castillo (1994) demonstrated that if a normal distribution is truncated,
there exist finite random samples for which the regular maximum likelihood equations
(MLE) do not possess a solution. Instead, a new maximum likelihood estimator as a
limit case is obtained, leading to a degenerate one-parameter distribution, namely the
exponential distribution“to fit” the sample data appropriately. Similar effects were
observed in the analysis of left-truncated Weibull distributions Kreer et al. (2015)
Kizilersu et al. (2016), where for some samples the MLE do not possess a solution.
Indeed, in Guscott (2018) it is found numerically that for a certain percentage of
random samples the MLE for the left-truncated log-logistic distribution do not admit
a solution ((see also Table 1) and compare this to Table 1 in Kizilersu et al. (2016) for
similar results concerning the truncated Weibull distribution).

These observations are the motivations for this paper, because they clearly need
careful mathematical analysis of the left-truncated log-logistic distribution. To the
best of our knowledge no study has proven the existence of the maximum likelihood
estimator for a random sample drawn from the left-truncated log-logistic distribu-
tion. Therefore, any numerical studies without this proof, assuming the existence of
a solution, will end up in the worst case either not converging at all, or converging to
a degenerate solution in which the parameter estimates can take values like zero or
infinity.

Our paper is structured as follows: Sect. 2 contains the main theorems for the
existence of a non-trivial solution of the maximum likelihood equations for the
left-truncated log-logistic distribution. It also examines the properties of a suitable
profile likelihood function and its asymptotic properties such as “consistency” and
“asymptotic normality”. These results will be relevant for the efficient numerical
implementation of an algorithm solving the maximum likelihood equations. As an
illustration, in Sect. 3 we apply our technique to cancer data and German and Cana-
dian precipitation data. All proofs are given in Sect. 4.

2 Mathematical results

2.1 Scaling property

We first provide a lemma dealing with a scaling property.

Lemma 1 (Scaling Property) Let X ∼ LL(α, β; xL) be a left-truncated log-logistic
random variable. Then for any k > 0 we have kX ∼ LL(kα, β; kxL).

Proof By assumption X > xL with X ∼ LL(α, β; xL). Thus kX > kxL and

prob(kX < x | kX > kxL) = prob(X < x/k|X > xL)

=
(
x/k
α

)β − ( xL
α

)β

1 +
(
x/k
α

)β
=
( x
kα

)β −
(
kxL
kα

)β

1 + ( x
kα

)β ,
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5412 M. Kreer et al.

and the proof is finished. ��
As a consequence of this scaling property, for simplicity we will assume the left-

truncation point xL = 1 later on. In otherwords, we rescale the independent identically
distributed (i.i.d.) sample X1, . . . , XN with k = 1/xL , leading to X1/xL , . . . , XN/xL
(which is truncated at 1). At any stage we can go back to the original sample and
original parameters by using a rescaling factor k = xL .

2.2 The first-order maximum likelihood equations

We introduce a new parameter λ ≡ αβ , and rewrite Eq. (1) as

fLT (x |λ, β) =
(
1 + xβ

L

λ

)
β

λ
xβ−1 1[

1 + xβ

λ

]2 . (4)

Note that with this notation we have η = xβ
L/λ.

Using Eq. (4) and a left-truncated log-logistic sample, denoted by X1, X2, . . . , XN ,
where all observations are X1, X2, . . . , XN > xL > 0, the log-likelihood function is
given by

ln LLT ({Xi }|λ, β; xL) = N ln

(
1 + xβ

L

λ

)
+ N ln β − N ln λ + (β − 1)

N∑
i=1

ln Xi

−2
N∑
i=1

ln

[
1 + Xβ

i

λ

]
. (5)

Themaximum likelihood equations are obtained by differentiating Eq. (5) with respect
to λ and β and setting the derivatives equal to zero. From ∂

∂λ
ln LLT = 0 we obtain

for (λ, β) ∈ R
+ × R

+

0 = 2

N

N∑
i=1

Xβ
i

λ

1 + Xβ
i

λ

− 1 −
xβ
L
λ

1 + xβ
L
λ

(6)

and from ∂
∂β

ln LLT = 0 we obtain for (λ, β) ∈ R
+ × R

+

0 =
xβ
L
λ
ln xL

1 + xβ
L
λ

+ 1

β
+ 1

N

N∑
i=1

ln Xi − 2

N

N∑
i=1

Xβ
i

λ

1 + Xβ
i

λ

ln Xi . (7)

A solution of these MLE, Eqs. (6)–(7), (if it exists) will be denoted by (λ̂, β̂). For
finite, untruncated samples, Gupta et al. (1999) (respectively Antle et al. (1970) for
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Maximum likelihood estimation... 5413

the logistic distribution) has shown that the MLE have a unique solution for the log-
logistic distribution (hence for the logistic distribution). These proofs fail when a
left-truncation point xL > 0 is introduced.

For simplicity we will take xL = 1 from now on without loss of generality. For
conveniencewe also define the quantity S =∑N

i=1 ln Xi and introduce a newobjective
function as in Gupta et al. (1999)

ϕ(λ, β) = ln LLT ({Xi }|λ, β; xL = 1) + S. (8)

The extrema of both the function ϕ(·, ·) and the log-likelihood function are the same
(and so are their MLE), because they only differ by a constant number, S.

2.3 Our key theorems

Our first theorem states the existence of a maximum for the objective function under
certain conditions.

Theorem 1 (Existence)Consider the i.i.d. left-truncated sample X1, . . . , XN > 1, for
which at least two observations are different, and define the objective function ϕ(·, ·) :
R

+ × R
+ → R by

ϕ(λ, β) = N ln

(
1 + 1

λ

)
+ N ln β − N ln λ + βS − 2

N∑
i=1

ln

[
1 + Xβ

i

λ

]
. (9)

Define βC > 0 as the unique solution of

1

2
= 1

N

N∑
i=1

1

XβC
i

(10)

and β0 > 0 by

1

β0
= 1

N

N∑
i=1

ln Xi . (11)

Then the following holds true

(1) For β0 > βC the objective function ϕ(·, ·) possesses a global maximum (λ̂, β̂) ∈
R

+ × R
+.

(2) For β0 ≤ βC the objective function ϕ(·, ·) possesses a (local) maximum (λ̂, β̂) =
(0, β0) on the boundary.

The proof is given in Sect. 4.
The next result is important for the numerical computation of the maxima, leads to

a profile likelihood function, and provides a curve for the loci1 of critical points.

1 Locus: A set of points that satisfy or are determined by some specific condition.
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5414 M. Kreer et al.

Theorem 2 (Loci of critical points)
Consider the i.i.d. left-truncated sample X1, . . . , XN > 1 for which at least two

observations are different. Then the following holds true:

(1) For fixed β > βC the equation

∂

∂λ
ϕ(λ, β)

∣∣∣∣
λ=λ̂

= 0

has exactly one positive solution λ̂ which depends on the fixed parameter β. Fur-
thermore we have the following inequalities

∂

∂λ
ϕ(λ, β) > 0 for 0 < λ < λ̂

∂

∂λ
ϕ(λ, β) < 0 for λ > λ̂

and thus

∂2

∂λ2
ϕ(λ, β)

∣∣∣∣
λ=λ̂

< 0. (12)

(2) For fixed 0 < β ≤ βC the equation

∂

∂λ
ϕ(λ, β)

∣∣∣∣
λ=λ̂

= 0,

has the only solution λ̂ = 0.

Hence the non-negative continous function �(·) : R+ → R
+
0 , defined by

�(β) =
{
0, 0 < β ≤ βC

λ̂, β > βC
(13)

is the locus of all possible critical points of the objective function ϕ(·, ·).
The proof is given in Sect. 4.

By inserting the function�(β), as constructed in Eq. (13), into the original objective
function Eq. (9) we obtain the “profile likelihood function”

ϕ̃(β) = ϕ(�(β), β) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N ln β − βS, β ∈ (0, βC ]

N ln
(
1 + 1

�(β)

)
+ N ln β − N ln�(β)

+βS − 2
∑N

i=1 ln

(
1 + Xβ

i
�(β)

)
, β ∈ (βC ,∞)

(14)
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Maximum likelihood estimation... 5415

Fig. 1 The function �(β) for the
profile likelihood

Therefore, we have reduced the two-dimensional maximisation problem for ϕ(·, ·)
on a finite region to a one-dimensional problem for ϕ̃(·) on a finite interval. Figure1
illustrates the problem: the critical points (and therefore our maximum guaranteed by
Theorem 1) are located inside the purple rectangle region and must be located on the
red curve.2 By the condition given by Eq. (12), critical points can only be maxima
or saddle points. This simplification is important because it improves the speed of
finding the critical points in our numerical studies dramatically. Unfortunately, we
were not able to prove uniqueness for the critical points, as the necessary concavity
arguments for the Hessian matrix seem intractable. Numerically, however, we always
found exactly one critical point for millions of samples generated and this point was
always a maximum.

A corollary below summarises the the two theorems discussed above.

Corollary 1 Under the assumptions of Theorems 1 and 2 the following holds true:

(1) If and only if β0 > βC the MLE, Eqs. (6)–(7), possess a solution (λ̂, β̂) = (0, 0)
(which might not be unique). Critical points are obtained by constructing the
function �(·) : R+ → R

+
0 as defined for all β > 0 in Theorem 2, Eq. (13), and

then solving Eq. (7), which now reads

0 = N

β
+

N∑
i=1

ln Xi − 2
N∑
i=1

Xβ
i ln Xi

�(β) + Xβ
i

, (15)

for the desired critical point β̂ > βC .
(2) If and only if β0 ≤ βC the MLE, Eqs. (6)–(7), do not possess a solution. The

likelihood attains a maximum on the boundary (λ̂, β̂) = (0, β0) with a Pareto

2 β1 < β2 are the finite boundaries of our region in which we prove the existence of a solution in Sect. 4,
see proof of Theorem 1, Fig. 6.
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5416 M. Kreer et al.

probability distribution given by

g(x |β0) = β0

x1+β0
. (16)

The proof is given in Sect. 4.
Our final theorem demonstrates the condition that at least two observations in our

sample be different is not only sufficient but also necessary. We see that otherwise no
finite maximum of the MLE exists.

Theorem 3 (Necessity of at least two different observations) Consider the i.i.d. left-
truncated sample X1 = X2 = · · · = XN > 1 for which all observations are equal to
X1, say. Then the following holds true:

(1) β0 = 1/ ln X1 and βC = (ln 2)/ ln X1
(2) For fixed β > βC the function

�(β) = Xβ
1 − 2

satisfies the ML equation for λ, Eq. (6).
(3) The profile likelihood function Eq. (14) reading here as

ϕ̃(β) = ϕ(�(β), β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N ln β − Nβ ln X1, β ∈ (0, βC ]

−N ln
(
Xβ
1 − 1

)
+ N ln β

+Nβ ln X1 − 2N ln 2, β ∈ (βC ,∞)

is continous and strictly monotonically increasing in β. It therefore does not pos-
sess a finite maximum.

The proof is given in Sect. 4.
Theorem 3, which can be also formulated in the same fashion for the untruncated

log-logistic MLE, might explain the phenomenon observed in Shoukri et al. (1988,
Table 1, p. 231): where the percentage of failures of their maximisation algorithm for
the likelihood is given for small samples. Indeed, when a sample consists of N = 15
data points which are all “nearly equal”, a direct optimisation by numerical methods
is bound to fail if the parameter region chosen is too “small”. The profile likelihood
will be increasing in one direction towards the boundaries of the “small” parameter
region and the Newton–Raphson solver of the MLE fails to converge. That the MLE
problem in this case possesses a solution was established in Gupta et al. (1999).

2.4 Asymptotic analysis and confidence regions

Having established the existence of point estimators (λ̂, β̂) in the previous subsection
under certain conditions, namely Eqs. (10) and (11), we now investigate the large-
sample properties of the MLE where the sample size tends to infinity. Our aim is to
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Maximum likelihood estimation... 5417

demonstrate consistency and asymptotic normality of the left-truncated log-logistic
distribution as N → ∞ using standard arguments provided by Newey and McFadden
(1994).

2.4.1 Consistency

We first demonstrate that the left-truncated log-logistic probability density function
is identifiable, i.e. for a compact set K ⊂ R

+ × R
+ and two distinct (λ1, β1) =

(λ2, β2) ∈ K we have according to Eq. (4) that fLT (x |λ1, β1) = fLT (x |λ2, β2) for
x > 0 with probability 1. To see this note that from fLT (x |λ1, β1) = fLT (x |λ2, β2)

we obtain with xL = 1 and assuming without loss of generality β2 ≥ β1 after some
simple algebraic manipulations

	(x) = x2β2+β1 − C
λ2

λ1
x2β1+β2 + 2(1 − C)λ2x

β1+β2

−Cλ1λ2x
β2 + λ22x

β1 = 0, (17)

where the constant C = (1 + λ−1
2 )β2/[(1 + λ−1

1 )β1]. The left-hand side of Eq. (17)
defines a so called generalised polynomial 	 : R+ → R with real powers listed in
descending order. Corollary 3.2 from Jameson (2006) asserts the existence of at most
5 positive zeros in our case because the number of terms in descending order is 5.
Thus identifiability is proven.

Next we investigate E(ln fLT (x |λ, β)) where the expectation E(·) is defined with
respect to the left-truncated log-logistic measure and some integrable function g(·),

E(g(X)) =
∫ ∞

xL
g(x)

[
1 +

( xL
α

)β
]

1[
1 + ( x

α

)β]2 d
( x
α

)β

, (18)

whereby xL = 1 and λ = αβ . Use the following upper bound

| ln fLT (x |λ, β)| = | ln (λ + 1) + ln β + (β − 1) ln x − 2 ln (λ + xβ)|
≤ ln (λ + 1) + ln β + ln xβ + 2 ln (λ + xβ), (19)

substitute y = xβ in Eq. (19) and also in the measure defined in Eq. (18) and because
the integrals

∫∞
1 dy(ln y)/(λ + y)2 < ∞,

∫∞
1 dy(ln (λ + y))/(λ + y)2dy < ∞ we

have finally established that for all (λ, β) ∈ K the following expectation is finite,
E(| ln fLT (x |λ, β)|) < ∞.We have therefore established the preconditions of Lemma
2.2 by Newey and McFadden (1994) that guarantees that E (ln fLT (X |λ, β)) has a
unique maximum. Thus the usual “information inequality” holds true for the left-
truncated log-logistic distribution.
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5418 M. Kreer et al.

Recall next the log-likelihood function Eq. (5) for our i.i.d. sample X1, . . . , XN

left-truncated at 1 and suppressing the parameter xL for convenience,

1

N
ln LLT ({X1, . . . , XN }|λ, β) = ln (λ + 1) + ln β + (β − 1)

1

N

N∑
i=1

ln Xi

− 2

N

N∑
i=1

ln (λ + Xβ
i )

In this last equality, all terms on the right-hand side are continous functions in X
for each (λ, β) ∈ K with probability 1 and all the terms, respectively their absolute
values can be bounded above by some functions for which the expectations E(·)
defined above in Eq. (18) are finite, namely E(ln X) < ∞ and E(ln (λ + Xβ)) < ∞
by similar arguments demonstrating the finiteness of the expectation in Eq. (19). Thus
Lemma 2.4 by Newey and McFadden (1994) can be applied, yielding the following
crucial result

sup
(λ,β)∈K

∥∥∥∥
1

N
ln LLT ({X1, . . . , XN }|λ, β) − {ln (λ + 1) + ln β

+(β − 1)E(ln X) − 2E(ln (λ + Xβ)
} ∥∥∥∥

p−→ 0 (20)

This convergence result Eq. (20) alongwith uniqueness established in the “information
inequality” allows us to apply the general Theorem 2.1 by Newey and McFadden

(1994) giving the desired weak consistency, i.e. as N → ∞ we have (λ̂N , β̂N )
p−→

(λ, β)where the subscript N on the hatted quantities indicates the sample size and the
arrow with superscript p indicates convergence in probability.

2.4.2 A remark on our existence criterion for N → ∞

As the sample size grows, N → ∞, our criterion for the existence of a ML estimator
inside the parameter region in Theorem 1, namely Eqs. (10) and (11), converges by
the law of large numbers in probability to the following limits

1

N

N∑
i=1

ln Xi
p−→ E (ln X) ,

1

N

N∑
i=1

X−βC
i

p−→ E
(
X−βC

)

and our conditions for the existence of the point estimators become β0 > βC with

1

β0
= E (ln X) ,

1

2
= E

(
X−βC

)
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Fig. 2 ρ(λ) as solution for Eq. (22) for various λ

Fig. 3 The ratio βC/β0

Evaluating these expressions with the expectation given in Eq. (18) we obtain intro-
ducing a new variable ρ = βC/β

β

β0
= E

(
ln Xβ

) = (1 + λ) ln (1 + λ)

λ
(21)

1

2
= E

([Xβ ]−ρ
) = (1 + λ)

∫ ∞

1
y−ρ 1

(λ + y)2
dy (22)

From Eq. (22) we can construct numerically a function ρ(λ) : R
+ → R

+ by
solving this equation for various values of λ. The graph is depicted in Fig. 2. Now we
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5420 M. Kreer et al.

Table 1 Frequency of “bad samples” not admitting a log-logistic MLE solution

p\N 30 50 100 200

0% 0% 0% 0% 0%

25% 0.6% 0% 0% 0%

50% 9% 5.3% 1.4% 0%

75% 25.1% 22.4% 17% 10%

rewrite Eq. (21) as follows

βC

β0
= ρ(λ)

(1 + λ) ln (1 + λ)

λ
(23)

As we see from the graph in Fig. 3 the left-hand side of Eq. (23) is always strictly less
than 1 for λ > 0 and thus our criterion for a true maximum of the maximum likelihood
function is satisfied in the limit N → ∞. For completeness we depict the statistics of
“bad samples” not possessing a solution as provided by the criterion in Theorem 1 in
Table 1 where p denotes the “truncation percentage”.

2.4.3 Asymptotic normality

The consistency of the ML estimator serves as a precondition for the asymptotic
normality upon which we will focus in this subsection. We return to the original
variables θ = (α, β), where αβ = λ and xL ≥ 0, because for these variables the
Fisher information matrix for complete (untruncated) samples is diagonal [see also

Reath et al. (2018)]. Let us also introduce for convenience of notation ∇θ =
(

∂
∂α

, ∂
∂β

)

the gradient vector and ∇θθ the Hessian matrix of second derivatives. In this notation
Theorem 3.3 by Newey and McFadden (1994) will provide the desired asymptotic
normality result: key conditions are a sample of i.i.d. random variables and asymptotic
consistency as well as additional five technical conditions, namely

(i) the true parameters θ = (α, β) ∈ interior(K ) the compact parameter region,
(ii) the pdf f (x |θ) = f (x |α, β) is twice continuously differentiable and f (x |θ) > 0

in a neighbourhood N of the true parameters θ = (α, β),
(iii)

∫
supθ∈N ||∇θ f (x |θ)||dx < ∞,

∫
supθ∈N ||∇θθ f (x |θ)||dx < ∞,

(iv) I = E((∇θ ln f (x |θ)∇θ ln f (x |θ))) exists and is nonsingular,
(v) E(supθ∈N ||∇θθ ln f (x |θ)||) < ∞ where || · || denotes the Euclidean norm.

We quickly check these conditions: (i) and (ii) are obviously satisfied because we
only consider true log-logistic distributions with θ = (α, β) = (0, 0). It is straight
forward to verify the dominance conditions for (iii) and (v) using a practical criterion
from Pratt (1960). For example (v) follows by noting that ∇θθ ln f (x |θ) is bounded,
uniformly in bounded α and β and β bounded away from zero. For conditions (iv)
we use the clever argument of Newey and McFadden (1994) namely the following
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identity valid under the “usual” regularity conditions from above

I = −E
(∇θ,θ ln f (x |θ)

) = E (∇θ ln f (x |θ)∇θ ln f (x |θ)) .

From this we conclude that θ I θT > 0 because θ · ∇θ ln f (x |θ) is a non-vanishing
function in the argument x on an interval and thus we have strict positivity for all
θ = 0.

Thus all the necessary conditions of Theorem 3.3 Newey and McFadden (1994)
are indeed satisfied and as the sample size gets larger, i.e. N → ∞, the joint ML
estimators (α̂, β̂) converge in distribution to a multivariate normal distribution with
mean (α, β), the true parameters,3 and variance-covariance matrix whose inverse is
proportional to the Fisher information matrix

[
var(α̂) cov(α̂, β̂)

cov(β̂, α̂) var(β̂)

]
≈ 1

N

[Iα,α Iα,β

Iβ,α Iβ,β

]−1

, (24)

where the elements of the Fisher information matrix are given by:

Iα,α = −E

(
∂2ϕ

∂α2

)
,

Iα,β = −E

(
∂2ϕ

∂α∂β

)
= −E

(
∂2ϕ

∂β∂α

)
= Iβ,α,

Iβ,β = −E

(
∂2ϕ

∂β2

)
.

with the expectations E(·) defined above in Eq. (18).
For given left-truncation values xL > 0, we have already introduced parameter,

η = (xL/α)β , after some computations (for details see Appendix A) the desired
results for expectations can be given

E

(
∂2ϕ

∂α2

)
= N

β

α2

{
− β

3 (1 + η)2

}

E

(
∂2ϕ

∂α∂β

)
= − N

α

⎧⎨
⎩

η
[
1 + η − η (3 + η) ln (1+η)

η + 3 ln(η)
]

− (1 + 3η) ln(1 + η)

3 (1 + η)2

⎫⎬
⎭

= E

(
∂2ϕ

∂β∂α

)

E

(
∂2ϕ

∂β2

)
= − N

3β2

{
1 + π2

3
(1 + η) + 2 (1 + η) PolyLog[2, −η] − 2

η

(1 + η)
ln(η)

3 θ̂ is asymptotically normal if
√
N (θ̂ − θ)

d−→ N (0, I−1(θ)) where I−1 is called asymptotic variance-
covariance of the θ̂ . Asymptotic normality imply that the estimator not only converges to the unknown
parameters, but it converges fast enough, at a rate 1/

√
N (Newey and McFadden 1994).

123



5422 M. Kreer et al.

+2 ln η ln(1 + η) −
[
(1 + η)3 − 1

]

(1 + η)2
ln2(η)

}
. (25)

In particular, we obtain for the untruncated case, i.e. xL = η = 0, the well-known
results of Reath et al. (2018)

E

(
∂2ϕ

∂α2

)
= −N

β2

3α2 ,

E

(
∂2ϕ

∂β∂α

)
= 0,

E

(
∂2ϕ

∂β2

)
= − N

β2

(
1 +

(
π2 − 6

)

9

)
.

For large N the asymptotic (1 − ξ)100 percent elliptical confidence region for the
parameters α and β, the celebrated Wald test, is given by [see e.g. Theorem 6.3.4
Bickel and Doksum (2015), Wingo (1989)]

Îα,α(α − α̂)2 + 2Îα,β(α − α̂)(β − β̂) + Îβ,β(β − β̂)2 ≤ χ2(1 − ξ ; 2), (26)

where the hat-symbol “ˆ” indicates that the Fisher matrix is evaluated at the estimated
parameters (α̂, β̂) and χ2 is the Chi-square distribution with 2 degrees of freedom
because the two parameters α and β are estimated. We shall later choose ξ = 0.95
and thus χ2(0.05; 2) ≈ 5.991. Inequality Eq.(26) defines the general confidence
region4 related to our point estimate (α̂, β̂). When the off-diagonal elements of the
Fisher matrix vanish, Iα,β = Iβ,α = 0, we can use the diagonal elements for the
confidence intervals for α and β respectively. For the 95%-confidence interval of a
standard Gaussian we have a multiplication factor 1.96 so that we find in this case for
the confidence intervals from Eq. (24)

α̂ ± 1.96
√
var(α̂) and β̂ ± 1.96

√
var(β̂). (27)

In this case, the confidence region is an ellipse whose axes are in x- respectively
y-direction.

3 Applications to real world data

3.1 Bladder cancer data set from Lee andWang (2003)

We apply our methods to the bladder cancer data set from Lee and Wang (2003),
Table 9.3, p. 231, which has been studied recently in Al-Shomrani et al. (2016) under
the hypothesis that the data are distributed according to a log-logistic distribution.

4 We choose α as x-axis and β as y-axis.
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Table 2 Remission times for log-logistic distribution for reduced and original bladder cancer data set

xL [m] N α̂ [m] β̂ ln L

0 128(137) 5.97 ± 0.09(5.98 ± 0.09) 1.695 ± 0.022(1.700 ± 0.022) −410.89(−439.57)

0.25 126(135) 6.11 ± 0.09(6.10 ± 0.09) 1.782 ± 0.022(1.779 ± 0.022) −402.20(−430.84)

1 120(128) 6.32 ± 0.10(6.37 ± 0.10) 1.877 ± 0.023(1.891 ± 0.022) −379.28(−404.74)

6 64(68) 8.63 ± 0.30(9.01 ± 0.31) 2.239 ± 0.056(2.291 ± 0.058) −206.00(−219.49)

The original Table 9.3 contains a set of 137 remission times in months from cancer
patients whereas in Al-Shomrani et al. (2016), only 128 data points from this table are
considered because nine observations (indicated by a “+” in the original Table 9.3)
have been removed. We shall consider the original data set of Lee and Wang (2003)
as well as the reduced data subset of Al-Shomrani et al. (2016):

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02,

13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,

9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82,

5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90,

2.69, 4.18, 5.34, 7.59, 0.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,

43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,

17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93,

11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 12.07, 3.25, 4.50, 6.25,

8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 21.73, 2.07,

3.36, 6.93, 8.65, 12.63, 22.69[, 4.65+, 0.87+, 24.80+, 10.86+, 4.70+, 3.02+,

19.36+, 8.60+, 3.33+].

Using our method, we estimate the parameters of the log-logistic distribution. This
was done for both the complete and truncated data set with various truncation points
for the original and the reduced bladder cancer set. Our results are displayed in Table 2
(the values in round brackets are for the original data set). Note that for the purpose

of comparison we use the scale parameter α̂ = λ̂1/β̂ . The confidence intervals for
the parameters are obtained from Eq. (27) and because the off-diagonal elements
of the Fisher information matrix become relevant for increasing truncation we also
provide the confidence ellipses according to Eq. (26) in Fig. 4 for the reduced data set
of Al-Shomrani et al. (2016) only.

We may compare our result without truncation with Al-Shomrani et al. (2016),
which found α̂ = 6.08982 months and β̂ = 1.725158, with a log-likelihood func-
tion value of −411.4574. These authors were using “LLmodel.Optim() function in R
with Newton–Raphson options […] as an iterative process for maximising the log-
likelihood function”. Our likelihood value being −410.89 is better and will lead to a
better estimation of the parameters α̂ and β̂.
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Fig. 4 Error ellipses for bladder cancer data (Lee and Wang 2003) with various left-truncations

Table 3 Berlin precipitation
data for log-logistic distribution
(95% significance level)

xL [mm] N α̂ [mm] β̂ ln L

0 141 564.0 ± 1.2 11.8 ± 0.1 −825.30

300 141 563.9 ± 1.2 11.8 ± 0.1 −825.22

400 137 565.9 ± 1.2 12.1 ± 0.1 −791.86

500 113 574.5 ± 1.5 13.6 ± 0.2 −616.60

3.2 Annual precipitation for Berlin and Toronto

In the literature the log-logistic distributions is often used to describe precipitation
data, for example Shoukri et al. (1988) and Ashkar and Mahdi (2006). For reasons of
homogeneity, Shoukri et al. (1988) focused on precipitation data of various Canadian
cities. We have chosen the annual precipitation for the city-state of Berlin, Germany
as an example, whose data are likely to be i.i.d. because of its small area. The data
are available from the German met office, Deutscher Wetterdienst (2022). The annual
precipitation data consist of 141 data points starting in 1881 and extending to 2021.
Also, to compare our method with Shoukri et al. (1988), we analyse the annual precip-
itation data for Toronto from 1 July to 30 June annually, as given in Toronto Weather
Statistics (2022), from 1937 until 2021. For Berlin our results are given in Table 3
and for Toronto in Table 4. Note that in our analysis the shape parameters, β̂, are
similar for both cities as can be seen nicely in Fig. 5. We compare our results with
Shoukri et al. (1988), where for Toronto α̂ = 789.8 mm and β̂ = 14.4 were given.
Whereas the estimates of the scale parameter α̂ are in good agreement, the values of
β̂ are different, but of similar order of magnitude.
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Table 4 Toronto precipitation
data for log-logistic distribution

xL [mm] N α̂ [mm] β̂ ln L

0 85 771.5 ± 2.7 11.6 ± 0.2 −526.58

300 85 771.5 ± 2.7 11.6 ± 0.2 −526.58

400 84 774.1 ± 2.5 12.3 ± 0.2 −514.65

500 83 775.9 ± 2.5 12.7 ± 0.2 −504.75

Fig. 5 Error ellipses for precipitation data for Berlin and Toronto

3.3 Outlook

The log-logistic distribution is heavier tailed than the log-normal distribution and
enjoys a closeness to the Pareto distribution. For modelling the distribution of wealth
and income, a left-truncated version of the log-logistic distribution Fisk (1961) is a
sensible approach, because in many economies, very low incomes (below a certain
threshold) are often earned in a shadow economy. Therefore, they are not captured in
official government statistics. We have shown that the log-logistic hypothesis can also
explain certain cancer survival data very well and accurately. We can also confirm that
in general the log-logistic distribution describes precipitation data regardless of their
region fairly well. It is noteworthy that even in recent daily precipitation data there
are days missing which would result in a too “small” annual precipitation value if the
missing data were replaced by zero. While the effect of this might be negligible for
higher annual precipitation it may have a more significant impact for lower annual
precipitation. A remedy for the statistical analysis could be the introduction of a left-
truncation point xL > 0 to overcome this problem.

How would one chose a left-truncation point xL > 0 in practical applications?
Whenever there is a gap in the observed data between 0 and some threshold value
this threshold value could be an obvious candidate for the left-truncation point. In the
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case of income distribution this could be the value of the tax allowance because below
this value the statistical data will be most likely erroneous or incomplete. For the
medical example of a patient dying a few days after the fatal diagnosis the reason for
the patient’s death might not be the illness itself but maybe suicide or a fatal accident.
Here a left truncation point bigger than 0.5 months might serve in order to single out
these events. For the case of precipitation one could take as a rule of thumb the value
of 0.1 mm/h serving as a measurement threshold (see Schnepper et al. (2023)). Hence
for a 24h day one might take 2.4 mm as a value for xL , which is quite large compared
to the typical annual precipitation of 75mm for the dry regions of Saudi Arabia.

Finally in the case of mixed distributions where one mixture component is light
tailed and the other is heavier tailed, such as log-logistic, our method will allow us to
estimate the parameters of the log-logistic component with a good degree of accuracy.
Thus, one has a tool at hand to decidewhether or not a two-componentmixture contains
a log-logistic component by employing an Expectation-Maximization algorithm for
determining the mixture component with better initial parameters to ensure quick and
accurate convergence.

4 Proofs for theorems from Sect. 2

4.1 Proof of Theorem 1

We first begin with a lemma dealing with “small” λ for the objective function given
in Eq. (9). Keep in mind that we have chosen xL = 1.

Lemma 2 For any β > 0, there exists some λ0 > 0 such that for λ ∈ [0, λ0) we have

ϕ(λ, β) = ϕ(0, β) + N

{
− 2

N

N∑
i=1

1

Xβ
i

+ 1

}
λ + O(λ2), (28)

where

ϕ(0, β) = lim
λ→0+ ϕ(λ, β) =

N∑
i=1

[−β ln Xi + ln β] . (29)

Proof For fixed β > 0 we obtain by differentiating Eq. (9) with respect to λ

∂

∂λ
ϕ(λ, β) = −N

λ

1
λ

1 + 1
λ

− N

λ
+ 2

λ

N∑
i=1

Xβ
i

λ

1 + Xβ
i

λ

= N

λ

⎧
⎨
⎩

2

N

N∑
i=1

1

1 + λ

Xβ
i

− 1 − 1

1 + λ

⎫
⎬
⎭

123



Maximum likelihood estimation... 5427

= N

λ

{
− 2

N

N∑
i=1

1

Xβ
i

λ + λ + O(λ2)

}
, (30)

where for λ ∈ (0, λ0) with 0 < λ0 < 1 the geometric series is absolutely convergent.
Thus integrating Eq. (30) over λ′ from 0 to λ we get

ϕ(λ, β) − ϕ(0, β) = lim
ε→0

∫ λ

ε

N

{
− 2

N

N∑
i=1

1

Xβ
i

+ 1 + O(λ′)
}
dλ′

= Nλ

{
− 2

N

N∑
i=1

1

Xβ
i

+ 1

}
+ O(λ2).

The computation of ϕ(0, β) = lim
ε→0

ϕ(ε, β) is straight forward. ��

In the next lemma we derive a result analogous to a result in Gupta et al. (1999)
about the behaviour of the objective function ϕ(λ, β) in a certain rectangle in the first
quadrant of the (λ, β)-coordinate plane. The situation is depicted in Fig. 6.

Lemma 3 Consider an i.i.d. left-truncated sample X1, . . . , XN all bigger than one
and for which at least two observations are different. For any M > 0 we have the
following inequalities valid for ϕ(λ, β) defined in Eq. (9):

(1) There exists a β1 > 0 such that for β ∈ (0, β1) we have ϕ(λ, β) < −M, indepen-
dent of λ.

(2) There exists a β2 > β1 such that for β > β2 we have ϕ(λ, β) < −M, independent
of λ.

(3) For β ∈ [β1, β2] there exists a λ1 > 0 such that for λ > λ1 we also have
ϕ(λ, β) < −M.

Proof
(1): We write Eq. (9) as

ϕ(λ, β) = N ln

(
1 + 1

λ

)
+ N ln β − N ln λ + βS − 2

N∑
i=1

ln

[
1 + Xβ

i

λ

]

=
N∑
i=1

ln
1 + 1

λ

1 + Xβ
i

λ

+ N ln β + βS +
N∑
i=1

ln
1
λ

1 + Xβ
i

λ

=
N∑
i=1

ln
λ + 1

λ + Xβ
i

+ N ln β + βS +
N∑
i=1

ln
1

λ + Xβ
i

< N ln β + βS (31)

because λ + Xβ
i > λ + 1 > 1. From the bound Eq. (54) we see that β1 > 0 can be

chosen independent of λ ≥ 0 and the first statement is proven.
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Fig. 6 The closed interval
[β1, β2] for the maximum of
ϕ(λ, β)

(2): see proof in Appendix B
(3): For λ > 1 and β ∈ [β1, β2] we have

ϕ(λ, β) ≤ N ln (1 + 1) + N ln β2 − N ln λ + β2S (32)

because the last term in Eq. (9) is always negative and the argument of the logarithm
is always bigger than 1. From inequality Eq. (56) we see the existence of a sufficiently
large λ1 > 1 such that the third statement follows. ��

Now we have all the ingredients for the proof of Theorem 1.

Proof of Theorem 1 We start the proof by looking at Fig. 6.
For statement (1) apply Lemma 3 to conclude that outside the shaded area our

objective function ϕ(λ, β) < −M for some arbitrarily large M > 0, i.e. our objective
function gets arbitrarily small. Thus a global maximum of the twice differentiable
objective function ϕ(·, ·) is either inside the shaded region [0, λ1]× [β1, β2] or on the
boundary with λ = 0, somewhere in the closed interval [β1, β2]. One easily computes
the only critical point and thus a candidate for a maximum of the objective function on
this boundary-line to be β0, as given in Eq. (11). By the condition β0 > βC and Lemma
2 this can be excluded: there exists some small λ0 > 0 such that for λ ∈ (0, λ0)

ϕ(λ, β0) > ϕ(0, β0)

and statement (1) is proven.
For statement (2) we use the following argument: by continuity there exists an

ε > 0 (first line) and by Lemma 2 a positive λ0 (second line) such that

ϕ(0, β0) = max {ϕ(0, β)|β ∈ [β0 − ε, β0 + ε]}
≥ max {ϕ(λ, β)|β ∈ [β0 − ε, β0 + ε], λ ∈ [0, λ0]}

and thus β0 is local maximum. ��
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4.2 Proof of Theorem 2

For λ > 0 we start from the rewritten Eq. (6)

0 = 2

N

N∑
i=1

Xβ
i

λ + Xβ
i

− 1 − 1

λ + 1
(33)

and investigate this equation Eq. (33) in greater detail. We firstly note the following:

Lemma 4 Consider a left-truncated log-logistic sample X1, . . . , XN all bigger than
1. Define the function q : R+ → (0, 1) by

q (β|(X1, . . . , XN )) ≡ 1

N

N∑
i=1

(
1

Xi

)β

.

Then the following holds true:

(1) q(·) is a monotonically decreasing function.
(2) The equation q (β|(X1, . . . , XN )) = 1

2 has a unique positive solution βC .

(3) For β ∈ (0, βC ] Eq. (33) only possesses the trivial solution λ̂ = �(β) = 0 and
for β > βC in addition exactly one positive solution λ̂ = �(β) > 0.

(4) Foranyfixedβ > 0 all the roots λ̂ = λ̂(β)of theMLEEq. (33)depend continuously
on the sample (X1, . . . , XN ).

(5) For a fixed sample (X1, . . . , XN ) all the roots λ̂ of the MLE Eq. (33) depend
continuously on
β ∈ (0,+∞). In addition, we have lim

β→βC+ �(β) = 0, where �(β) is defined in

part (3) of the lemma.

Proof
(1) Note that 0 < 1/Xi < 1 . . . and therefore (1/Xi )

β is monotonically decreasing
and the first statement follows.

(2) Next note that because of

lim
β→0+ q (β|(X1, . . . , XN )) = 1,

lim
β→∞ q (β|(X1, ..., XN )) = 0,

and the monotonicity of q(·) the second statement follows immediately.
(3) To prove the third statement we start from the likelihood equation, Eq. (33),

defining for fixed β > 0 for convenience Yi = Xβ
i ,

1 + 1

λ + 1
= 2

N

N∑
i=1

Yi
λ + Yi

. (34)
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Next define by the right-hand side of Eq. (34), the function

k(λ) = 2

N

N∑
i=1

Yi
λ + Yi

(35)

which is monotonically decreasing in λ ∈ [0,∞) because

k′(λ) = − 2

N

N∑
i=1

Yi
(λ + Yi )2

< 0. (36)

Afterwards define a function by the left-hand side of Eq. (34) as

�(λ) = 1 + 1

λ + 1
(37)

which is also monotonically decreasing in λ ∈ [0,∞) because

�′(λ) = − 1

(λ + 1)2
< 0. (38)

Note that we have

lim
λ→0+ k(λ) = 2,

lim
λ→+∞ k(λ) = 0,

and also

lim
λ→0+ �(λ) = 2,

lim
λ→+∞ �(λ) = 1.

Thus the trivial solution λ̂ = 0 is always a solution. Next, we consider three cases:
Case I k′(0) < �′(0):
In this case according to Eqs. (36) and (38) the function k(·) falls faster than

the function �(·), at least for argument λ near 0. If this is true for all λ > 0, i.e.
k′(λ) < �′(λ), then clearly there will not be any intersection and λ̂ = 0 is the only
solution of Eq. (33). If the latter is not true, then the situation will be as depicted in
Fig. 7:

In this case k(·) initially falls quicker than �(·) and then slows down to intersect
at a point λ1 > 0 and possibly a second time at a point λ2 > λ1. Thus we have for
λ1 > 0 that the function graph of k(·) crosses the function graph of �(·) from below,
meaning that the slopes satisfy the following inequality

k′(λ1) > �′(λ1).
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Fig. 7 Case I: The functions k(λ) (golden) and �(λ) (purple)

By the intermediate value theorem there will exist a positive number λ∗ ∈ (0, λ1) such
that

k′(λ∗) = �′(λ∗). (39)

We shall show that this will lead to a contradiction as follows. We write Eq. (39) in
detail as

− 2

N

N∑
i=1

Yi
(λ∗ + Yi )2

= − 1

(λ∗ + 1)2

or rearranging

1

N

N∑
i=1

Yi
(λ∗ + 1)2

(λ∗ + Yi )2
= 1

2
. (40)

Define the function h(·) : R+ → R+ by

h(λ) = 1

N

N∑
i=1

Yi
(λ + 1)2

(λ + Yi )2
. (41)
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Thus Eq. (40) is equivalent to h(λ∗) = 1
2 . Note that

h′(λ) = 1

N

N∑
i=1

Yi
2(λ + 1)(λ + Yi ) − 2(λ + 1)2

(λ + Yi )3
> 0 (42)

because all terms are positive. In particular, the numerator is positive because Yi > 1.
Note that we have the following limit

lim
λ→∞ h(λ) = 1

N

N∑
i=1

Yi > 1,

lim
λ→0+ h(λ) = 1

N

N∑
i=1

1

Yi
< 1.

Hence for the equation h(λ) = 1
2 to have a solution in (0, λ1) we need to require that

the second limit is smaller than 1
2 , i.e.

1

N

N∑
i=1

1

Yi
<

1

2
⇐⇒ k′(0) > �′(0),

which is a contradiction. Thus, in Case I we have as the only real solution λ̂ = λ0 = 0.
Note that Case I corresponds to β < βC .

Case II: k′(0) > �′(0):
Here the function k(·) decreases slower than the function �(·) for λ near 0 and only

here can the graph of k(·) intersect the graph of �(·) from above at λ1 > 0 before
tending to zero as λ gets larger, as depicted in Fig. 8.

We need to show now that this intersection is unique. We note that at λ1 the graph
of k(·) crosses the graph of �(·) from above, i.e.

k′(λ1) < �′(λ1). (43)

However, if there were a second crossing point, λ2 > λ1, the graph of k(·)would cross
the graph of �(·) from below, i.e.

k′(λ2) > �′(λ2).

As in Case I we conclude by the intermediate value theorem that there exists a λ∗ ∈
(λ1, λ2) such that

k′(λ∗) = �′(λ∗)
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Fig. 8 Case II: the functions k(λ) (golden) and �(λ) (purple)

which is equivalent to

1

N

N∑
i=1

Yi
(λ∗ + 1)2

(λ∗ + Yi )2
= 1

2
(44)

and this in turn is similar to Eq. (40). We use the function h(·), as defined in Eq. (41),
to obtain the following limits:

lim
λ→+∞ h(λ) = 1

N

N∑
i=1

Yi > 1,

lim
λ→λ1

h(λ) >
1

2

showing that Eq. (44) has no solution. The last limit follows from Eq. (43) and the
definition of h(·) from Eq. (44)

− 2

N

N∑
i=1

Yi
(λ1 + Yi )2

< − 1

(λ1 + 1)2
⇐⇒ k′(λ1) < �′(λ1).

Thus, in this case there exists only one positive root λ1 of Eq. (33). Case II corresponds
to β > βC .
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Case III: k′(0) = �′(0):
Here, one needs to look at the next higher derivatives, i.e. k′′(0) > �′′(0), which

reads here as 1 < 2
N

∑N
i=1

1
Y 2
i
or

1

2
<

1

N

N∑
i=1

(
1

Yi

)2

= q(2β).

This cannot be true if

1

2
= 1

N

N∑
i=1

(
1

Yi

)
= q(β),

because of the properties of the above defined function q(·). Note that Case III corre-
sponds to β = βC . Thus, the third statement has been proven.

(4) For the fourth statement rewrite the MLE Eq. (33) as in Eq. (34) and multiply

both sides of the equation with (λ+1)
N∏
i=1

(λ+Yi ). Thus, after rearranging one obtains

a polynomial of (N + 1)-th order in the variable λ

λN+1 + bN (Y1, ...,YN )λN + ... + b0(Y1, ..., YN ) = 0, (45)

where the coefficients bi (Y1, ...YN ) are certain continuous polynomial functions in
(Y1, ...YN ) obtained in the process of rearranging terms and sorting by the powers of
λ. From Appendix A in Ostrowski (1960) or Harris and Martin (1987), the roots λ̂

of some algebraic equation (i.e. a polynomial equation) depend continuously on the
coefficients and the statement is proven.

(5) The last statement is shown in a similar manner to the previous statement and
because all Xβ

i are continuous functions in β respectively, the desired statement is
proven because for β ≤ βC the only real root is λ̂ = 0. ��

The next lemma provides some additional information about the function �(·)
defined implicitly by Eq. (33) via Lemma 4.(3).

Lemma 5 Consider a left-truncated log-logistic sample X1, ..., XN all bigger than
1. Then the non-zero solution of the MLE Eq. (33) �(·) : (βC ,∞) → R

+ has the
following properties:

(1) For fixed β �(β) is a root of Eq. (33) with multiplicity 1.
(2) �(·) is an analytic function in the range of (βC ,∞).

Proof Recall that xL = 1. From Eq. (5) respectively Eq. (9) we obtain for fixed
β ∈ (βC ,+∞) by direct computation

∂

∂λ
ϕ(λ, β)

∣∣∣∣
�(β)

= N

�(β)

[
2

N

N∑
i=1

Xβ
i

λ + Xβ
i

− 1 − 1

λ + 1

]

�(β)

= 0,
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∂2

∂λ2
ϕ(λ, β)

∣∣∣∣
�(β)

= − N

�(β)

[
2

N

N∑
i=1

Xβ
i

(λ + Xβ
i )2

− 1

(λ + 1)2

]

�(β)

,

where the first derivative is equal to zero for λ = �(β) by construction. Next we
define a polynomial function p(·) : R+

0 → R by

p(λ) ≡
[
2

N

N∑
i=1

Xβ
i

λ + Xβ
i

− λ + 2

λ + 1

]
(λ + 1)

N∏
j=1

(λ + Xβ
j )

= 2

N

N∑
i=1

Xβ
i (λ + 1)

∏
1≤ j≤N

j =i

(λ + Xβ
j ) − (λ + 2)

N∏
j=1

(λ + Xβ
j ). (46)

The first claim of the lemma states that �(β) is a root of p(·), Eq. (46), but not of
p′(·). By construction we have indeed p(�(β)) = 0. We show that the assumption
p′(�(β)) = 0 leads to a contradiction. Compute the derivative in Eq. (46)

p′(λ) = 2

N

N∑
i=1

Xβ
i

∏
1≤ j≤N

j =i

(λ + Xβ
j ) + 2

N

N∑
i=1

Xβ
i (λ + 1)

N∑
k=1

∏
1≤ j≤N
j =i, j =k

(λ + Xβ
j )

−
N∏
j=1

(λ + Xβ
j ) − (λ + 2)

N∑
k=1

∏
1≤ j≤N
j =k

(λ + Xβ
j ).

Then write down p′(�(β))/
∏
j
(�(β)+ Xβ

j ), which by our assumption p′(�(β)) = 0

vanishes

0 = 2

N

N∑
i=1

Xβ
i

�(β) + Xβ
i

+ 2

N
(�(β) + 1)

N∑
i=1

Xβ
i

�(β) + Xβ
i

N∑
k=1

1

�(β) + Xβ
k

−1 − (�(β) + 2)
N∑

k=1

1

�(β) + Xβ
k

= 2

N

N∑
i=1

Xβ
i

�(β) + Xβ
i

[
1 + (�(β) + 1)

N∑
k=1

1

�(β) + Xβ
k

]

−1 − (�(β) + 2)
N∑

k=1

1

�(β) + Xβ
k

= �(β) + 2

�(β) + 1

[
1 + (�(β) + 1)

N∑
k=1

1

�(β) + Xβ
k

]
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−1 − (�(β) + 2)
N∑

k=1

1

�(β) + Xβ
k

= �(β) + 2

�(β) + 1
− 1 = 1

�(β) + 1

which is a contradiction because �(β) > 0 and thus the first claim is proven. Hence,
for β ∈ (βC ,+∞) fixed and any critical point �(β) of ϕ(·, β) we have always

∂2

∂λ2
ϕ(λ, β)

∣∣∣∣
�(β)

= 0.

We know that for a maximum the second derivative is negative, so we always have

∂2

∂λ2
ϕ(λ, β)

∣∣∣∣
�(β)

< 0

from which we conclude that for all β > βC

[
2

N

N∑
i=1

Xβ
i

(λ + Xβ
i )2

− 1

(λ + 1)2

]

�(β)

> 0 (47)

For the second claim we note that by its definition as root of multiplicity one the
function �(·) is analytic for arguments β > βC by simple application of the implicit
function theorem (e.g. Ostrowski (1960)) and the proof is finished. ��

Now we have all the ingredients for the proof of Theorem 2.

Proof of Theorem 2 Lemma 4.(3) already contains the main statements concerning the
unique construction of the function�(·) : R+

0 → R
+
0 . The behaviour of the derivatives

∂
∂λ

ϕ(λ, β) for λ = �(β) follows from the easily obtained asymptotic for λ → ∞

∂

∂λ
ϕ(λ, β) = −N

λ

{
1 + O

(
1

λ

)}

and Lemma 2 for small λ ≥ 0 and the fact that ∂
∂λ

ϕ(λ, β) possesses only one zero.
��

Thenext lemma treats the situation inwhich the log-logistic distribution degenerates
when λ → 0+. We formulate it for the convenience of general xL > 0 and work
within the Banach space L1(R+) for which the integrals of their absolute values are
Lebesgue-integrable.

Lemma 6 Consider the left-truncated log-logistic distribution given in Eq. (1) with
xL > 0. In the limit λ → 0+ respectively α → 0+ the following holds true:
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(1) There is L1-convergence in the sense of Lebesgue of

fLT (·|α, β)
L1−→ g(·|β) as α → 0+,

where

g(x |β) =
(

β

xL

)(
x

xL

)−(1+β)

(48)

is the Pareto probability distribution density.
(2) While the first ML equation for α respectively λ, Eq. (6), becomes redundant, the

second ML equation for β, Eq. (7) simplifies to

1

β
= 1

N

N∑
i=1

ln

(
Xi

xL

)
. (49)

Proof (1) To prove statement (1) we first show point-wise convergence for some x >

xL fixed, namely if we choose any arbitrary positive sequence (αn)n∈N → 0+ as
n → ∞:

[
1 +

(
xL
αn

)β
]

β

αn

(
x

αn

)β−1 1[
1 +

(
x
αn

)β
]2

=
(
xL
αn

)β
β

αn

(
x

αn

)β−1 ( x

αn

)−2β

+ O(α2β
n )

n→∞−−−→
(

β

xL

)(
x

xL

)−β−1

= g(x |β).

Next we need to show that the functions fLT (·|αn, β) can be bounded by a positive
integrable function. For this we choose the following bound:

0 < fLT (x |αn, β) < c · g(x |β),

where the constant c > 0 needs to be chosen in a suitable way. To this end we start
from the following

[
1 +

(
xL
αn

)β
]

β

αn

(
x

αn

)β−1 1[
1 +

(
x
αn

)β
]2 < c

(
β

xL

)(
x

xL

)−(1+β)
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which can be reduced to

α
β
n + xβ

L

xβ
L

(
xβ

α
β
n + xβ

)2

< c.

Now there exists an n0 > 0 such that (α
β
n + xβ

L )/xβ
L ≤ 2 for n > n0. Because

xβ/(α
β
n + xβ) < 1 we may choose

c = max

{
2, max

0≤n≤n0

(
1 + α

β
n

xβ
L

)}
.

The desired convergence result in the L1-Lebesgue sense follows from Lebesgue’s
dominated convergence theorem.

(2) To prove statement (2) note that in Eq. (7) as αn → 0+ the leading term on the
right-hand side is 1/β + ln (xL/αn) whereas the leading term on the left-hand side
is
∑N

i=1 ln (Xi/αn) · 1 and rearranging terms and taking the limit yields the desired
result. ��

4.3 Proof of Corollary 1

Proof Part (1) is an immediate consequence of our theorems. The proof of statement
(2) is provided by the Lemma 6. ��

4.4 Proof of Theorem 3

Proof (1): The expressions follow immediately from Theorem 1. Note that X1 > 1
throughout.

(2): Because λ = �(β) > 0 for β > βC we can write Eq. (6) as

0 = 2
Xβ
1

λ + Xβ
1

− 1 − 1

λ + 1
.

Now inserting λ = �(β) = Xβ
1 − 2 on the right-hand side yields

2
Xβ
1

2(Xβ
1 − 1)

− 1 − 1

Xβ
1 − 1

= Xβ
1

Xβ
1 − 1

− Xβ
1 − 1

Xβ
1 − 1

− 1

Xβ
1 − 1

= 0.

(3): We see continuity by straight-forward computation:

lim
β→βC− ϕ̃(β) = lim

β→βC+ ϕ̃(β) = N ln βC − N ln 2.
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For monotonicity we differentiate the profile likelihood with respect to β. For β ∈
(0, βC ) we obtain

ϕ̃′(β) = N

(
1

β
− ln X1

)
> 0

because β < βC = ln 2/ ln X1 < 1/ ln X1. Finally for β ∈ (βC ,+∞) after some
easy computation we obtain:

ϕ̃′(β) = N

(
1

β
− ln X1

Xβ
1 − 1

)
=
(
1

β
− 1

βC

ln 2

Xβ
1 − 1

)
> 0,

where the last inequality follows from the inequality

βC (Xβ
1 − 1) > β ln 2.

To see this define two functions F(β) = βC (Xβ
1 − 1) and G(β) = β ln 2.

Obviously we have F(βC ) = βC > G(βC ) = βC ln 2.
With the derivatives F ′(β) = βC X

β
1 ln X1 = Xβ

1 ln 2 > G ′(β) = ln 2 we obtain the
desired result as

F(β) − G(β) = F(βC ) − G(βC ) +
∫ β

βC

(
F ′(b) − G ′(b)

)
db > 0

because all terms on the right-hand side are positive. ��

Appendix A: Derivatives of log-likelihood function

We start from the objective function rather than the log-likelihood function, Eq. (8)
where we redefined λ as λ ≡ αβ and allow the given truncation parameter xL ≥ 0

ϕ(α, β; xL ) := N ln

(
1 +

( xL
α

)β
)

+ N ln β − Nβ ln α

+β

N∑
i=1

ln Xi − 2
N∑
i=1

ln

(
1 +

(
Xi

α

)β
)

.

The first derivatives read as

∂ϕ

∂α
= N

β

α

⎧⎪⎨
⎪⎩

−
( xL

α

)β

1 + ( xL
α

)β − 1 + 2

N

N∑
i=1

(
Xi
α

)β

1 +
(
Xi
α

)β

⎫⎪⎬
⎪⎭

,
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∂ϕ

∂β
= N

( xL
α

)β ln xL
α

1 + ( xL
α

)β + N

β
− N ln α +

N∑
i=1

ln Xi − 2
N∑
i=1

(
Xi
α

)β

ln xL
α

1 +
(
Xi
α

)β
,

and the second derivatives are

∂2ϕ

∂α2 = N
β

α2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( xL
α

)β [1 + β + ( xL
α

)β]

[
1 + ( xL

α

)β]2 + 1 − 2

N

N∑
i=1

(
Xi
α

)β
[
1 + β +

(
Xi
α

)β
]

[
1 +

(
Xi
α

)β
]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

∂2ϕ

∂α∂β
= −N

α

⎧⎪⎨
⎪⎩

( xL
α

)β [1 + ( xL
α

)β + ln
( xL

α

)β]

[
1 + ( xL

α

)β]2 + 1

− 2

N

N∑
i=1

(
Xi
α

)β
[
1 +

(
Xi
α

)β + ln
(
Xi
α

)β
]

[
1 +

(
Xi
α

)β
]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= ∂2ϕ

∂β∂α
,

∂2ϕ

∂β2 = − N

β2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
( xL

α

)β ln2
( xL

α

)β
[
1 + ( xL

α

)β]2 + 1 + 2

N

N∑
i=i

(
Xi
α

)β

ln2
(
Xi
α

)β

[
1 +

(
Xi
α

)β
]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

For simplicity we introduce a new random variable Y := (X/α)β and set Yi :=
(Xi/α)β and likewise η := (xL/α)β . This yields the following expectations:

E

(
∂2ϕ

∂α2

)
= N

β

α2

{
η (1 + β + η)

(1 + η)2
+ 1 − 2E

(
Y (1 + β + Y )

(1 + Y )2

)}
,

E

(
∂2ϕ

∂β∂α

)
= −N

α

{
η (1 + η + ln η)

(1 + η)2
+ 1 − 2E

(
Y (1 + Y + ln Y )

(1 + Y )2

)}
,

E

(
∂2ϕ

∂β2

)
= − N

β2

{
− η ln2 η

(1 + η)2
+ 1 + 2E

(
Y ln2 Y

(1 + Y )2

)}
,

where

E( f (Y )) =
∫ ∞

yL
f (y) [1 + η]

1

[1 + y]2
dy. (50)

E

(
Y (1 + β + Y )

(1 + Y )2

)
= (3 + β) + 3 (3 + β) η + 6η2

6 (1 + η)2

E

(
Y (1 + Y + ln Y )

(1 + Y )2

)
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= 1

6 (1 + η)2

{
(1 + η) (3 + 5η) + (1 + η)3 ln (1 + η) − η2 (3 + η) ln(η)

}

E

(
Y ln2 Y

(1 + Y )2

)

= 1

18

{
− 6 + (1 + η) π2 − 3η ln(η) [2 (1 + η) + η (3 + η) (ln(η))]

(1 + η)2

+ 6 (1 + η) ln(η) ln(1 + η) + 6 (1 + η) PolyLog[2,−η]
}

(51)

where

PolyLog[2,−η] = Li2[−η] =
∞∑
k=1

(−η)k

kn

= S1,1(−η) = −
∫ 1

0
ln (1 + ηt)

dt

t
(52)

The PolyLog function can also be described in terms the Neilsen generalised polylog-
arithm function.5 Making use of Eq. (51), we now give the final expressions for the
Eq. (50)

E

(
∂2ϕ

∂α2

)
= N

β

α2

{
− β

3 (1 + η)2

}

E

(
∂2ϕ

∂α∂β

)
= − N

α

⎧⎨
⎩

η
[
1 + η − η (3 + η) ln (1+η)

η + 3 ln(η)
]

− (1 + 3η) ln(1 + η)

3 (1 + η)2

⎫⎬
⎭

= E

(
∂2ϕ

∂β∂α

)

E

(
∂2ϕ

∂β2

)
= − N

3β2

{
1 + π2

3
(1 + η) + 2 (1 + η) PolyLog[2, −η] − 2

η

(1 + η)
ln(η)

+2 ln(η) ln(1 + η) −
[
(1 + η)3 − 1

]

(1 + η)2
ln2(η)

}
(53)

Appendix B: Proof of statement (2) in Lemma 3

We follow the proof of Gupta et al. (1999) and adapt their notation and define the
quantities a = − ln λ, si = ln Xi and S = ∑N

i=1 ln Xi = ∑N
i=1 si . For simplicity we

nowwrite ϕ(a, β) rather than ϕ(λ, β) and use the fact that all si are positive because of
the left-truncation equaling one. First, however, we start with two useful propositions:

5 PolyLog[n, z] = Lin(z) =∑∞
k=1

zk
kn , the Neilsen generalised polylogarithm function

Sn,p(z) = (−1)n+p+1

(n−1)!p!
∫ 1
0 lnn−1(t) lnp(1 − zt) dt

t , Sn−1,1(z) = Lin(z).
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Proposition 1 For any m > 0 and c ∈ R let A ∈ R satisfy the following inequalities

(i) A ≤ mc
(ii) A ≤ −mc

Then A satisfies the following inequality:

A ≤ −m|c|.

Proof We have A ≤ 0 by adding up inequalities (i) and (ii). Consider first the case
when c > 0 in which case inequality (ii) is tighter than inequality (i), thus A ≤
−mc = −m|c|. Likewise, when c < 0 the inequality (i) is tighter than inequality (ii),
thus A ≤ mc = m(−|c|). The case c = 0 is trivial.

��
Proposition 2 For zi ∈ R we have the following inequalities

1

N

N∑
i=1

zi ≤ ln

(
1 + exp

[
1

N

N∑
i=1

zi

])
≤ 1

N

N∑
i=1

ln
(
1 + ezi

)
.

Proof Note that the function ψ(z) = ln (1 + exp [z]) is convex because ψ ′′(z) =
ez/(1 + ez)2 > 0 for all z ∈ R. The right-hand side inequality is Jensen’s inequality
(Hardy et al. 1952, p. 74, Eqs. (3.8.1) and (3.8.2)), whereas the left-hand side follows
from monotonicity of the logarithm.

��
Proof of statement (2) in Lemma 3 In our new notation the objective function Eq. (9)
reads as

ϕ(a, β) = N ln
(
1 + ea

)+ N ln β + Na + βS − 2
N∑
i=1

ln
[
1 + ea+βsi

]
. (9)

We shall derive various inequalities from this equation. Because the last term is neg-
ative, we immediately find the following inequality

ϕ(a, β) ≤ N ln
(
1 + ea

)+ N ln β + Na + βS. (54)

Using the entire inequality chain from Proposition 2we obtain another inequality from
Eq. (9)

ϕ(a, β) ≤ N ln
(
1 + ea

)+ N ln β − Na − βS. (55)

Applying Proposition 1 to the inequalities Eqs. (54) and (55) we get

ϕ(a, β) ≤ N ln
(
1 + ea

)+ N ln β − βN

∣∣∣∣
a

β
+ S

N

∣∣∣∣ . (56)
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Afinal upper bound is obtained fromEq. (9) usingProposition 2 for any i = 1, 2, ..., N

ϕ(a, β) ≤ N ln
(
1 + ea

)+ N ln β −
N∑
i=1

ln
[
1 + ea+βsi

]

≤ N ln
(
1 + ea

)+ N ln β − β

(
a

β
+ si

)
. (57)

Case I: First consider a ≥ 0. We can bound the positive quantity ln (1 + ea) from
above by ln 2 + a and thus inequality Eq. (55) altogether yields

ϕ(a, β) ≤ N ln 2 + N ln β − βS, (58)

the desired upper bound independent of a.
Case II: Consider now a < 0 We can bound the positive quantity ln (1 + ea) from

above by ln 2. In this part we shall use inequality Eq. (56) reading as

ϕ(a, β) ≤ N ln 2 + N ln β − βN

∣∣∣∣
a

β
+ S

N

∣∣∣∣ (59)

and inequality Eq. (57) reading as

ϕ(a, β) ≤ N ln 2 + N ln β − β

(
a

β
+ si

)
. (60)

Because not all si are equal, there exists an index i0 with

si0 − S

N
= ε0 > 0.

We have (−∞, si0 − ε0) ∪ (S/N + ε0,+∞) = R. Again we consider two subcases:
If we have −a/β ∈ (S/N + ε0,+∞) then

− a

β
>

S

N
+ ε0 (61)

from which we obtain

∣∣∣∣
a

β
+ S

N

∣∣∣∣ = −
(
a

β
+ S

N

)
> ε0. (62)

Now we use this lower bound Eq. (62) in conjunction with inequality Eq. (59) to
obtain

ϕ(a, β) ≤ N ln 2 + N ln β − βNε0. (63)
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Likewise, if we have −a/β ∈ (−∞, si0 − ε0), then

− a

β
< si0 − ε0 (64)

from which we obtain

ε0 < si0 + a

β
. (65)

Now we use this lower bound Eq. (65) in conjunction with inequality Eq. (60)

ϕ(a, β) ≤ N ln 2 + N ln β − βε0. (66)

Hence for any a < 0 we obtain from Eqs. (63) and (66) the desired bound independent
of a

ϕ(a, β) ≤ N ln 2 + N ln β − βε0 (67)

since N ≥ 2.
From Case I Eq. (58) and Case II Eq. (67) we obtain altogether

ϕ(a, β) ≤ N ln 2 + N ln β − β min {S, ε0} (68)

and thus the existence of a sufficiently large β2 > β1 > 0, independent of a such that
ϕ(a, β) < −M for β > β2 and all a ∈ R. This concludes the proof.
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