Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314962 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 99 [Issue:] 1 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 115-139
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract A variety of approaches has been developed to deal with uncertain optimization problems. Often, they start with a given set of uncertainties and then try to minimize the influence of these uncertainties. The reverse view is to first set a budget for the price one is willing to pay and then find the most robust solution. In this article, we aim to unify these inverse approaches to robustness. We provide a general problem definition and a proof of the existence of its solution. We study properties of this solution such as closedness, convexity, and boundedness. We also provide a comparison with existing robustness concepts such as the stability radius, the resilience radius, and the robust feasibility radius. We show that the general definition unifies these approaches. We conclude with an example that demonstrates the flexibility of the introduced concept.
Schlagwörter: 
Robust optimization
Uncertainty sets
Non-linear optimization
Price of robustness
GSIP
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.