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Abstract
A variety of approaches has been developed to deal with uncertain optimization prob-
lems. Often, they start with a given set of uncertainties and then try to minimize the
influence of these uncertainties. The reverse view is to first set a budget for the price
one is willing to pay and then find the most robust solution. In this article, we aim to
unify these inverse approaches to robustness. We provide a general problem definition
and a proof of the existence of its solution. We study properties of this solution such as
closedness, convexity, and boundedness. We also provide a comparison with existing
robustness concepts such as the stability radius, the resilience radius, and the robust
feasibility radius. We show that the general definition unifies these approaches. We
conclude with an example that demonstrates the flexibility of the introduced concept.

Keywords Robust optimization · Uncertainty sets · Non-linear optimization · Price
of robustness · GSIP

1 Introduction

Inmany real-world problems, one does not know exactly the input data of a formulated
optimization problem. This may be due to the fact that we are working with forecasts,
predictions, or simply unavailable information. To cope with this, it is essential to
treat the given data as uncertain. In principle, there are two different ways to treat
uncertainty. Either one knows some distribution of the uncertainty, or not. In the first
case, this information can be used for themathematical optimization problem, while in
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the second case, no additional information is given. Both approaches are widely used
inmany real-world applications, such as energymanagement, finance, scheduling, and
supply chain management. For a detailed overview of possible applications of robust
optimization, we refer to Bertsimas et al. (2011). In this article, we focus mainly on
problems without information about the distribution of uncertainty.

Fixing the uncertain scenario to solve the corresponding optimization problemmay
yield a solution that is infeasible for other scenarios of the uncertainty set. Therefore,
one tries to find solutions that are feasible for all possible scenarios of the uncertainty
set. The problem of finding an optimal solution, i.e. the solution with the best objective
function value, among these feasible solutions is called the robust counterpart (cf. Ben-
Tal et al. 2009).

There are many surveys on robust optimization, such as Ben-Tal et al. (2009) or
Bertsimas et al. (2011). For tractability reasons, the focus is often limited to robust
linear or robust conic optimization. Robust optimization in the context of semi-infinite
optimization can be found, for instance, in Goberna et al. (2013), while López and Still
(2007); Vázquez et al. (2008); Stein (2012); Stein and Still (2003) consider general
solution methods. For applications and results on robust nonlinear optimization, we
refer to a survey by Leyffer et al. (2020).

The question of how to construct a suitable uncertainty set is essential for real-
world applications. This has been addressed, for example, in Bertsimas et al. (2004)
and Bertsimas and Brown (2009). However, the exact size of the uncertainty set is
often difficult to determine in practice (cf. Gorissen et al. 2015). Nevertheless, this
choice has a great influence on the actual solution (see, for example, Bertsimas and
Sim 2004; Chassein and Goerigk 2018a, b). A closely related question is which subset
of the uncertainty set is covered by a given solution. Considering a larger uncertainty
set may lead to overly conservative solutions, since more and more scenarios have to
be considered. This trade-off between the probability of violation and the effect on
the objective function value of the nominal problem is called the price of robustness
and was introduced by Bertsimas and Sim (2004). Many robust concepts that have
been formulated and analyzed in recent years try to deal with the price of robustness
in order to avoid or reduce it.

Bertsimas and Sim (2003, 2004) defined the Gamma robustness approach, where
the uncertainty set is reduced by cutting out less likely scenarios. The concept of light
robustness was first defined by Fischetti and Monaci (2009) and later generalized by
Schöbel (2014). Given a tolerable loss for the optimal value of the nominal solution,
one tries to minimize the grade of infeasibility over all scenarios of the uncertainty set.
Another approach to try to avoid overly conservative solutions is to allow a second
stage decision. Ben-Tal et al. (2004) introduced the idea of adjustable robustness,
where the set of variables is divided into here-and-now variables and wait-and-see
variables. While the former need to be chosen before the uncertainty is revealed, the
latter need to be chosen only after the realization is known. For a survey on adjustable
optimization, we refer to Yanıkoğlu et al. (2019).

In this article, we pursue a different approach to address the price of robustness,
which we call inverse robustness. The main idea is to reverse the perspective of the
approaches described above. Instead of finding a solution that minimizes (or max-
imizes) the objective function under a given set of uncertainties, we want to find a
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solution that maximizes, for example, the size of the considered set of uncertainties
respecting a bound on the objective function. In this way, we are not dependent on the
a priori choice of the uncertainty set and then accepting the loss of objective value.
Instead, we can set the pricewe arewilling to pay and then find themost robust solution
with this given budget. Furthermore, the study of the above approaches is often limited
to the robust linear case. We want to define inverse robustness in a more general way
and study the concept also for nonlinear problems.

Our approach is related to the inverse perspective to robust optimization introduced
by Chassein and Goerigk (2018a)). They considered a generalization of robust opti-
mization problems where only the shape of the uncertainty set is given, but not its
actual size. Later, they extended their results to finding a solution that performs well
on average over different uncertainty set sizes (cf. Chassein andGoerigk 2018b). Espe-
cially for the linear case, concepts have been introduced to measure the robustness of
a given solution. The stability radius and resilience radius of a solution can be seen
as measures for a fixed solution of how much the uncertain data can deviate from
a nominal value while still being an (almost) optimal solution. For a more detailed
discussion of resilience we refer to Weiß (2016). Both concepts can be seen as prop-
erties of a given solution, and the shape of the uncertainty set must be specified in
advance. A similar concept has been studied in the area of facility location problems.
Labbé presented in Labbé et al. (1991) an approach to compute the sensitivity of a
facility location problem. Several publications (Carrizosa and Nickel 2003; Carrizosa
et al. 2015; Ciligot-Travain and Traoré 2014; Blanquero et al. 2011) investigate the
question of how to find a solution that is least sensitive, and thus deal with a concept
quite similar to resilience. We will show that finding a point that maximizes the sta-
bility radius or the resilience radius, given a budget on the objective, can be seen as a
special case of inverse robust optimization. However, the general definition of inverse
robustness providesmore flexibility. First, it allows to definemeasures that can include
distributional information about the uncertainty. Second, the shape of the considered
uncertainty is not restricted to given shapes, but can be more complex.

The outline of the article is as follows. In Sect. 2 we define the inverse robust opti-
mization problem (IROP) and discuss properties of this approach using two examples.
In the next section we investigate the existence and structural properties of the solu-
tions to the inverse robust optimization problem. InSect. 4wediscuss different possible
choices and descriptions for the cover space that contains all potential uncertainty sets.
Afterwards, we compare our general definition with other inverse robustness concepts
in Sect. 5. In Sect. 6 we provide and discuss an extended example. Finally, we conclude
the article with a brief outlook.

2 The inverse robust optimization problem

In this article, we consider parametric optimization problems given by

(Pu) min
x∈X⊆Rn

f (x, u) (1)

s.t. g(x, u) ≤ 0,
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118 H. Berthold et al.

depending on an uncertain parameter u ∈ R
m . We assume that f (·, u), g(·, u) : X →

R are at least continuous functions w.r.t. x for some fixed parameter u, which is also
called scenario, belonging to an uncertainty set U ⊆ R

m . The set X ⊆ R
n is given by

further restrictions on x that do not depend on u. For simplicity, we consider only one
constraint that depends on the uncertain parameter u. However, the following results
generalize to multiple constraints by considering their maximum. We assume that
there is a special scenario ū ∈ U called nominal scenario. This could be the average
of the scenarios, or the most likely scenario. The nominal problem (Pū) is defined as
follows:

(Pū) f ∗:=min
x∈X f (x, ū)

s.t. g(x, ū) ≤ 0.

We call the objective function value of the optimization problem for the nominal
scenario above the nominal objective value and denote it as f ∗. Throughout this article
we assume that at least the nominal problem has a feasible solution and the nominal
objective value f ∗ is well-defined.

The idea of the inverse robust optimization problem (IROP) is to allow a nonnegative
deviation ε ≥ 0 from the nominal objective value in order to cover the uncertainty
set U as much as possible. We refer to the deviation as the budget. The task to cover
U as much as possible needs a more precise interpretation. For this, we define a cover
space W ⊆ 2U and a merit function V : W → R which maps every subset of U to a
value in R. With this, we obtain an instance of the IROP as follows:

(PIROP) max
x∈X ,W∈W

V (W ) (2)

s.t. f (x, u) ≤ f ∗ + ε ∀u ∈ W , (3)

g(x, u) ≤ 0 ∀u ∈ W , (4)

u ∈ W . (5)

We call the constraint (3) the budget constraint and the constraints (4) the feasibility
constraint of the IROP.

Depending on the uncertainty set U , it may be possible to choose a budget ε such
that the entire uncertainty set can be covered. This case is rather uninteresting, since
the budget constraint becomes irrelevant. We will mostly focus on the case where it
is a limiting constraint, and given a budget ε, we cannot cover the entire uncertainty
set U . The idea in inverse robustness is to choose a large uncertainty set U just as a
ground set for the uncertainty. The actual uncertainty set W covered is determined by
the optimization problem and depends on the chosen budget ε.

Please note that it is a non-trivial task to define a merit function V and a cover space
W , since the optimal solution and the tractability depend on it. A bad choice can even
lead to an ill-posed problem due to Vitali’s theorem (cf. Halmos 1950). However,
this should not be seen as a drawback. These two objects make the definition of an
inverse robust optimization problem very general. The merit function can be simply
the volume, but can also contain information about the distribution of the uncertain
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A unified approach to inverse robust optimization problems 119

parameter u. The cover space can either consist of sets with a concrete shape, such as
ellipses or boxes, or it can also be a generic set system like a σ -algebra.

In Sect. 4 we will discuss some concrete choices of the cover space. In Sect. 3 we
are going to show some general statements about the existence and shape of solutions
for (PIROP). One property wewant to emphasize here, is that the existence of a feasible
solution is relatively easy to guarantee. As long as {ū} ∈ W , there is a feasible solution,
as we assumed that the nominal problem is well-defined.

Before turning to the theoretical investigation of the inverse robust optimization
problem, we present two examples that show properties of the problem and the differ-
ence to the classical robust counterpart.

2.1 Dependency on budget

The first example illustrates that the solution of an inverse robust optimization problem
does not depend on the choice of the uncertainty set U in general, but instead on the
available budget ε ≥ 0. To this end, we focus on the following parametric optimization
problem

(Pu) min
x∈[0,2] x + u2

s.t. −x + u ≤ 0,

where we consider a parameterized uncertainty setU (a) = [0, a] with a ≥ 1. Choos-
ing u = 0 leads to the nominal solution

f ∗ = 0.

The corresponding inverse robust optimization problem with W = {[0, d], d ∈
[0, a]} and the merit function V (W ) = vol(W ) has the form

(PIROP) max
x∈[0,2],d∈[0,a] d

s.t. x + u2 ≤ ε ∀u ∈ [0, d],
−x + u ≤ 0 ∀u ∈ [0, d].

As we will see later, due to Lemmas 3.5–3.7, considering the cover space B(U (a))

would lead to an equivalent problem.
The inverse robust optimization problem has the solution x∗ = d∗ =
min

{
− 1

2 +
√

1
4 + ε, 2, a

}
. If we choose a large parameter a or a small budget ε,

this solution is independent of the uncertainty set parameter a ≥ 1 and thus allows
modeling mistakes in the specification of U .
On the contrary, the corresponding strict robust optimization problem
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min
x∈[0,2] max

u∈[0,a] x + u2

s.t. max
u∈[0,a] −x + u ≤ 0

has the solution x∗(a) = a and f ∗(a) = a2 + a for a ∈ [1, 2] and no solution for
a > 2. This dependencemakes it in classical robust optimization crucial to think about
the specification of U beforehand, whereas in inverse robust optimization a solution
always exists.

2.2 Extreme scenarios

In the next example we want to study the effect of extreme scenarios that can occur
especially in nonlinear optimization. We consider for u ∈ [0, 1] the following param-
eterized optimization problem

min
x∈[0,1] x

s.t. x ≥ u100.

If we consider the nominal scenario u = 0, then the nominal objective value f ∗ = 0,
we receive for chosen budget ε ≥ 0 and the same cover space as before the following
inverse robust optimization problem:

max
x∈[0,1],d∈[0,1] d

s.t. x ≤ ε,

x ≥ u100 ∀u ∈ [0, d].

The optimal solution is given by x∗ = min{ε, 1} and d∗ = min{ε 1
100 , 1}. On the

other hand, choosing an uncertainty set U = [0, a] with a ∈ [0, 1] before solving the
classical robust counterpart

min
x∈[0,1] x

s.t. x ≥ u100 ∀u ∈ [0, a]

leads to the optimal solution x∗ = a100.
A very conservative choice in classical robust optimization would be to choose

a = 1 which would also lead to a high price for robustness and x∗ = 1 as optimal
robust solution. In inverse robustness we would first choose a budget ε, for example
ε = 0.1. The price of robustness we would pay is fixed. The maximal uncertainty set
we can cover with this budget has a size of d∗ = 0.11/100 ≈ 0.977. This means that
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A unified approach to inverse robust optimization problems 121

we only need to pay a price of 0.1, but cover more than 95% of the area of the original
uncertainty set.

Choosing a smaller a priori set with a = 0.5 leads to a very small price to pay
to achieve robustness, 1

2100
. However, if one is ready to pay more for robustness, e.g.

ε = 0.001 one can cover more than 90% of the area of the original uncertainty set,
which is a large part of all scenarios.

The reason for this phenomenon is that u = 1 is, for this problem, an extreme
scenario. Covering it has a high price in optimality. In the inverse robust formulation
we tend to leave out extreme scenarios and try to find a good solution on the remainder.

These first two examples show two differences to a robust counterpart. First, the
solution depends directly on the price we are willing to pay to achieve robustness and
not on the a priori choice of the uncertainty set. Second, the inverse robust optimization
will leave out extreme scenarios, making it a less conservative approach for robust
optimization.

3 Existence and structure of solutions

After the formal introduction and two motivational examples, this section is devoted
to properties of the solutions of the problems. We are first especially interested in
the existence of a solution and then give some statements about structural properties
of the solution. To illustrate that the solution does not always have to exist, we start
with a simple example. We consider for an uncertain scenario u ∈ R

2 the following
optimization problem:

min
x∈[0,∞)

x + u1.

If we choose as a nominal scenario ū = 0, then the optimal solution is given by x̄ = 0.
As a cover space W we consider unit balls with an arbitrary norm

W := {W (p, d) := {u ∈ R
2 | ‖u‖p ≤ d}, p ∈ N, d ∈ [0,∞)}

and as merit function the volume V (W ) := vol(W ). If we now allow for a budget
ε > 0, we receive the following inverse robust optimization problem

max
x∈[0,∞),p∈N,d∈[0,∞)

d

s.t. x + u1 ≤ ε ∀u ∈ W (p, d).

All feasible solutions have a volume strictly less than ε2. The sequence (0,W (k, ε))k∈N
is feasible for the inverse robust optimization problem and vol(W (k, ε)) is monotoni-
cally increasing and converges towards ε2. This means that in this simple example no
optimal solution exists. For this example, the main issue for existence is the choice of
the cover space W and not the optimization variables.

After this negative example we now introduce statements that ensure the existence
of a solution. Motivated by the above example, we make for the next statements some
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basic assumptions about the cover space W and the merit function. Given a compact
subset C ⊆ U , we denote the set of all compact subsets of C by K(C).

Assumption 3.1 We assume that the cover spaceW satisfies the following conditions:

1. For any W ∈ W , we know that W ∈ W , where W denotes the closure of W .
2. K(C) ∩ W is complete with respect to the Hausdorff-metric dH for any compact

subset C ⊆ U .
3. {u} ∈ W .

In the following we let W̃:=K(U )∩W . Note that, ifU is itself compact, it suffices
to check the second condition in Assumption 3.1 for C = U .

Assumption 3.2 Given a cover spaceW ⊆ 2U , we assume that the objective function
V : W → R satisfies the following conditions:

1. V : W̃ → R is upper semi-continuous w.r.t. the topology induced by the
Hausdorff-metric and

2. V (W1) ≤ V (W2) for all W1,W2 ∈ W with W1 ⊆ W2.

In the remainder of this sectionwe study how the structure of the parametric problem
(Pu) influences an optimal chosen set W ∗ ∈ W . We start with a theorem that ensures
the existence of a solution of (PIROP).

Theorem 3.3 Given a compact uncertainty set U ⊆ R
m, two continuous func-

tions f , g : X ×U → R w.r.t. (x, u) ∈ X ×U, a compact set X ⊆ R
n, a cover space

W ⊆ 2U and a merit function V which fulfill Assumptions 3.1 and 3.2. Then there
exists a maximizer (x∗,W ∗) ∈ X × W of (PIROP), where W ∗ is a compact set.

Proof First we show that if a solution exists, then the corresponding solution setW ∗ is
a compact set. Let W be the closure of a set W ∈ W . Because of Assumption 3.1, we
know that W ∈ W holds. Due to the continuity of f , g w.r.t. u we can also conclude
that for any feasible (x,W ) ∈ F , where

F :={(x,W ) ∈ X × W : f (x, u) ≤ f ∗ + ε ∀u ∈ W ,

g(x, u) ≤ 0 ∀u ∈ W , ū ∈ W }

holds, also (x,W ) ∈ F is feasible. Since we assumed that V (W1) ≤ V (W2) for
any W1,W2 ∈ W with W1 ⊆ W2, we can reduce the search space of the original
optimization problem to the space of closed elements of the cover space W . As the
uncertainty setU was assumed to be compact, we reduce the search space to the space
of compact elements of the cover space which is by definition W̃ .

In a second step, we show that the feasible set

F̃ :={(x,W ) ∈ X × W̃ : f (x, u) ≤ f ∗ + ε ∀u ∈ W ,

g(x, u) ≤ 0 ∀u ∈ W , ū ∈ W }
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is compact and non-empty. As U is compact, K(U ) is also a compact set itself.1

Because we assumed that W̃ is complete w.r.t. the Hausdorff-metric dH , we know that
it is closed and therefore compact, too. Consequently, the set X × W̃ is a compact set
as the Cartesian product of two compact sets.

Next we prove that F̃ is a closed set. To do so, we consider a convergent sequence
(xk,Wk)k∈N ⊆ F̃ with limit (x∗,W ∗) ∈ X×W̃ . We have to show that (x∗,W ∗) ∈ F̃ .
We do this by showing that the constraints (3–(5)) are satisfied.

• As (xk,Wk) ∈ F̃ , we know that u ∈ Wk holds for all k ∈ N and consequently
u ∈ ⋂

k∈N Wk ⊆ W ∗ as dH (Wk,W ∗) → 0, where dH is the Hausdorff-metric.
• Fix an arbitrary u∗ ∈ W ∗. As limk→∞ dH (Wk,W ∗) = 0, we can find a sequence

(uk)k∈N with uk ∈ Wk for all k ∈ N and uk → u∗. By continuity of g and
feasibility of (xk,Wk) for all k ∈ N we get:

g(x∗, u∗) = lim
k→∞ g(xk, uk) ≤ lim

k→∞ max
u∈Wk

g(xk, u) ≤ 0.

As u∗ ∈ W ∗ was chosen arbitrarily this implies maxu∈W ∗ g(x∗, u) ≤ 0.
• We can argue the same way as for the feasibility constraint (4) to show:
maxu∈W ∗ f (x∗, u) ≤ f ∗ + ε.

This means that all constraints are satisfied and (x∗,W ∗) ∈ F̃ . As the sequence
(xk,Wk)k∈N was arbitrarily chosen, we showed that F̃ is closed.
In total we know that the feasible set F̃ is compact as a closed subset of a compact set.

Because V was assumed to be upper semi-continuous w.r.t.W on W̃ , we can ensure
the existence of a maximizer of (PIROP). Note that the feasible set F is non-empty as
the choice (x∗, {ū}) is feasible by definition of f ∗ for all budgets ε ≥ 0. �

In the statement above we assumed that U is compact. We will now drop this
assumption but demand that the function V is a finite measure on a σ -algebra.

Theorem 3.4 Assume that W is a σ -algebra on U and V : W → R is a finite
measure. Let X be a compact set, f , g : X × U → R be continuous functions and
let Assumption 3.1 hold. Moreover, assume that there is a sequence of compact sets
Ck ∈ W, k ∈ N, such that Ck ⊆ Ck+1 for k ∈ N and

⋃
k∈N Ck = U. Then there exists

a maximizer (x∗,W ∗) ∈ X × W of (PIROP).

Proof As in the proof of Theorem 3.3we can restrict our consideration to closed sets in
W . Note that by assumption the feasible set of (PIROP) is non-empty and we consider
a finite measure, which fulfills Assumption 3.2 (2) by definition and guarantees that
the objective is bounded. Thus the supremum V ∗ exists and we can find a sequence
of feasible elements (xl ,Wl)l∈N such that

lim
l→∞ V (Wl) = V ∗. (6)

As X is assumed to be compact, we can find a subsequence which converges towards
an x∗ ∈ X . We can assume for the remainder that liml→∞ xl = x∗. As we consider a

1 In the set of subsets of Rm using the topology induced by the Hausdorff-metric, see Hausdorff (1957).
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finite measure we can find for each δ > 0 a k ∈ N such that

V (Ck) ≥ V (U ) − δ. (7)

Now K(Ck) ∩ W is, as in the proof above, again a compact set. Which implies that
for a fixed k the sequence (Wl ∩ Ck)l∈N has an accumulation point W ∗

k . W.l.o.g. we
assume that this accumulation point is unique. Otherwise, we switch notations to the
corresponding subsequence.

AsW ∗
k is a compact set and V is a finitemeasure, we conclude using Fatou’s Lemma

that

V (W ∗
k ) ≥ V (lim sup

l→∞
(Wl ∩ Ck)) ≥ lim sup

l→∞
V (Wl ∩ Ck).

Because of Eq. (7) we moreover know that V (Wl ∩ Ck) ≥ V (Wl) − δ for all l ∈ N.
Together with Eq. (6) we receive

V (W ∗
k ) ≥ V ∗ − δ.

It is easy to check that (x∗,W ∗) is feasible, where we let W ∗ = ⋃
k∈N W ∗

k . As W is
a σ -algebra we can guarantee W ∗ ∈ W and by the continuity of measures we have
V (W ∗) = liml→∞ V (Wl) = V ∗ such that (x∗,W ∗) is a maximizer of (PIROP). �

After ensuring the existence of a solution,we can askwhichproperties of the original
problem described by f , g and U induce which structure of W ∗. One property that
we will use later in the discussion of an example problem in Sect. 6 is the inheritance
of convexity.

Lemma 3.5 If a given IROP instance has a maximizer (x∗,W ∗), and f (x∗, ·), g(x∗, ·)
are convex functions w.r.t. u ∈ conv(U )—where conv(U ) denotes the convex hull
of U—, the merit function V satisfies Assumption 3.2 and the cover space satisfies
W̃ ∗:=conv(W ∗) ∩ U ∈ W , then the decision (x∗, W̃ ∗) is also a maximizer of the
problem.

Proof Let us denote the optimal solution of the IROP instance as (x∗,W ∗). We argue
by showing that the choice (x∗, W̃ ∗) satisfies V (W ∗) ≤ V (W̃ ∗) and that this choice
is feasible w.r.t. the inverse robust constraints.

By definition we know W ∗ ⊆ W̃ ∗ ⊆ U and by Assumption 3.2 that implies
V (W ∗) ≤ V (W̃ ∗). In order to prove that W̃ ∗ is feasible, we choose any arbitrary
u ∈ W̃ ∗. By the definition of W̃ ∗ there exist w1, w2 ∈ W ∗, λ ∈ [0, 1] such that

f (x∗, u) = f (x∗, λw1 + (1 − λ)w2)

holds. Due to the convexity of f w.r.t. w ∈ U and the feasibility of W ∗ we know that

f (x∗, λw1 + (1 − λ)w2) ≤ λ f (x∗, w1) + (1 − λ) f (x∗, w2)

≤ λ( f ∗ + ε) + (1 − λ)( f ∗ + ε)
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= f ∗ + ε

holds as well. Since u ∈ W̃ ∗ was chosen arbitrarily we know that

f (x∗, u) ≤ f ∗ + ε ∀u ∈ W̃ ∗.

Analogously we show g(x∗, u) ≤ 0 ∀u ∈ W̃ ∗. Furthermore we know that ū ∈
W ∗ ⊆ W̃ ∗ and consequently W̃ ∗ is feasible and the claim holds. �

Next we will show that the continuity of the describing functions f , g w.r.t. u will
imply the (relative) closedness of W ∗ (w.r.t. U ).

Lemma 3.6 If a given IROP instance has a maximizer (x∗,W ∗), and f (x∗, ·), g(x∗, ·)
are continuous functions w.r.t. u and the objective function V satisfies Assumption 3.2
and the cover space satisfies W̃ ∗:=W ∗ ∩U ∈ W , then the decision (x∗, W̃ ∗)—where
W ∗ denotes the closure of W ∗—is also a maximizer of the problem.

Proof Let us denote the optimal solution of the inverse robust problem as (x∗,W ∗).
We will argue by showing that the choice (x∗, W̃ ∗) satisfies V (W ∗) ≤ V (W̃ ∗) and
that this choice is feasible w.r.t. the inverse robust constraints.

By definition we know W ∗ ⊆ W̃ ∗ ⊆ U and by Assumption 3.2 this implies
V (W ∗) ≤ V (W̃ ∗). Next we show that W̃ ∗ is feasible:

To do so, we choose any arbitrary u ∈ W̃ ∗. By the definition of W̃ ∗ there exist a
sequence (wk)k∈N ⊆ W ∗ such that

lim
k→∞ wk = u and

f (x∗, wk) ≤ f ∗ + ε ∀k ∈ N

holds. Due to the continuity of f w.r.t. w ∈ U we know that

f (x∗, u) = f (x∗, lim
k→∞ wk)

= lim
k→∞ f (x∗, wk)

≤ f ∗ + ε

holds as well. Since u ∈ W̃ ∗ was chosen arbitrarily we know that

f (x∗, u) ≤ f ∗ + ε ∀u ∈ W̃ ∗.

Analogously we show g(x∗, u) ≤ 0 ∀u ∈ W̃ ∗. Furthermore we know that ū ∈
W ∗ ⊆ W̃ ∗ and consequently W̃ ∗ is feasible and the claim holds. �

Last, but not least we will specify conditions for the boundedness of W ∗. In the
following statement we call a function f : Rn → R coercive, if

f (x) → ∞ for ‖x‖ → ∞.
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Lemma 3.7 If a given IROP instance has a maximizer (x∗,W ∗) and h(x∗, ·):=
max{ f (x∗, ·), g(x∗, ·)} is a coercive function w.r.t. u or U is bounded, then the set
W ∗ is bounded.

Proof For the sake of contradiction, we assume thatW ∗ is unbounded. IfU is bounded,
this is a contradiction to W ∗ ⊆ U . If h(x∗, ·) is coercive and W ∗ is unbounded, then
there exists a sequence (wk)k∈N such that wk ∈ W ∗ and limk→∞ ‖wk‖ = ∞. As
(x∗,W ∗) is assumed to be a maximizer and therefore is feasible, we conclude that

h(x∗, wk) ≤ max{ f ∗ + ε, 0} < ∞ ∀k ∈ N

holds. This contradicts the coercivity of h(x∗, ·) that guarantees for every unbounded
sequence (uk)k∈N ⊆ U

lim
k→∞ h(x∗, uk) = ∞.

This settles the proof. �

4 Choice of cover space

Before we can introduce the inverse robust optimization problem (PIROP), we need
to specify the cover space W . This section illustrates some example cover spaces
which satisfy Assumption 3.1 such as the whole power set, the Borel-σ -algebra of the
uncertainty set or parameterized families of subsets. These cover spaces can be used
together with Theorem 3.3 to generate a solution of the (PIROP).

The whole power set At first we consider the whole power setW = 2U and show
that it satisfies Assumption 3.1. We assume that the uncertainty set U is compact. We
then know that for an arbitrary W ∈ 2U the closure W ⊆ U and therefore W ∈ W .
This means that the first condition of Assumption 3.1 holds. The second condition

K(U ) ∩ W = K(U ) ∩ 2U = K(U ) is complete

holds becauseU is compact (seeHausdorff 1957). The last condition holds becauseu ∈
U and therefore {u} ∈ 2U = W . Consequently,W = 2U satisfies Assumption 3.1 for
any compact uncertainty setU ⊆ R

m . Because the power set is in a sense big enough
to contain a solution for (PIROP), it is not surprising that it satisfies Assumption 3.1.
One application of the whole powerset can be in the discrete case, where U is finite.
Then one could wish to maximize the number of scenarios covered. In the next steps
we gradually decrease the size of the cover space.

Borel-σ -algebra A more suitable choice, especially if we want to consider mea-
sures, is a σ -algebra. We are interested in the cover space W = B(U ) where B(U )

denotes the Borel-σ -algebra on the closed set U .
By definition the Borel-σ -algebra contains all closed subsets of U , especially all
compact sets and {u}. This means that the first and last condition of Assumption 3.1
hold if U is a closed set. As the Borel-σ -algebra on a closed set contains also all
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compact sets, the completeness condition then also follows. This means that for a
closed set U Assumption 3.1 is satisfied.

Also the additional assumptions of Theorem 3.4 on a cover space W holds for
the Borel-σ -algebra. As the sequence (Ck)k∈N of compact sets, unit balls around the
nominal solution with increasing radius k ∈ N can be considered.

Sets described by continuous inequality constraints Another step towards a
numerically more controllable cover space is done by considering

W = {W (δ), δ ∈ C(U ,R)},
with W (δ) = {u ∈ U : δ(u) ≤ 0}.

In this cover space each element is described by a continuous inequality constraints
on U . Specifying

δu : U → R, u �→ ‖u − u‖,

we can guarantee that W (δu) = {u} is in W . Furthermore, the inclusion K(U ) ⊆ W
holds as for any compact set A ∈ K(U ) the distance function

δA : U → R, u �→ d(u, A)

is continuous. Because for a compact A the points satisfying δA(u) ≤ 0 are exactly
the points u ∈ A, we can conclude that A = W (δA) ∈ W holds for an arbitrary
A ∈ K(U ).
Consequently, W satisfies Assumption 3.1.

Sets described by a family of continuous inequality constraints Last, but not
least, we consider cover spaces that are induced by elements of a design space D ⊆ R

q .
Using so called design variables d ∈ D we focus on the cover space induced sets

W = {W (d), d ∈ D},
with W (d) = {u ∈ U : v(u, d) ≤ 0},

where v(·, d) : U → R is a continuous function w.r.t. u ∈ U for all d ∈ D. Con-
sequently, all sets W (d) are closed for any d ∈ D such that the first condition of
Assumption 3.1 is fulfilled by construction. The other two conditions will not automat-
ically hold and depend on the choice of the function v and the set D. As an easy positive
example one could think about v(u, d) = ‖u − u‖ − d, for an arbitrary norm ‖ · ‖.
This way the function v induces the elementsW (d) = Bd(u) := {u ∈ R

m | ‖u‖ ≤ d}
for d ∈ D. The choice d = 0 ensures {u} ∈ W . Choosing D = [0, r ] for some r ∈ R

will then ensure that W satisfies Assumption 3.1. Analogously also ellipsoidal sets
can be covered.

However it is possible to construct examples where there exists no solution to
(PIROP). Consider for example U = [−1, 1], u = 0, D = [0, 1] and

v(u, d):=max(u · (1 − d),−d − u).
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We can then set W (d) = [−d, 0] for all d ∈ [0, 1), however, for d = 1 one obtains
W (1) = [−1, 1]. Given X = [−1, 1], the objective function as f (x, u):=x and the
constraint as g(x, u):=0.5 − x + u, and consider the corresponding inverse robust
problem. Here, we can define a feasible point (x, d) for every d ∈ [0, 1). If we take
the length of the interval W (d) as a merit function, we are interested in the choice
d = 1. Because (x, 1) is always infeasible for any x ∈ [−1, 1], there exists no solution
to (PIROP).

This is not surprising. The choice of a finite dimensional design space D ⊆ R
q

with q ∈ N reduces the inverse robust optimization problem to a general semi-infinite
problem (GSIP) as we can rewrite (PIROP) in this case as:

(PGSIP) max
x∈Rn ,d∈DV (W (d))

s.t. f (x, u) ≤ f ∗ + ε ∀u ∈ W (d),

g(x, u) ≤ 0 ∀u ∈ W (d),

u ∈ W (d).

For GSIP it is well known that the solution might not exist. For a more detailed
discussion we refer to Stein (2003). A survey of GSIP solution methods is given in
Stein (2012).

A possibility to ensure the existence of a solution and to design discretization
methods is to assume the existence of a fixed compact set Z ⊆ R

m̃ and a continuous
transformation map t : D × Z → R

m , such that for every d ∈ D holds

t(d, Z) = W (d).

In this case the GSIP reduces to a standard semi-infinite optimization problem and a
solution can be guaranteed by assuming compactness of X . This idea is used by the
transformation based discretization method introduced in Schwientek et al. (2020).

5 Comparison to other robustness approaches

As we have pointed out in the introduction, there exist several concepts similar to
the inverse robustness. Here we briefly discuss how the stability radius, the resilience
radius and the radius of robust feasibility fit in the context of inverse robustness.

5.1 Stability radius and resilience radius

The stability radius provides a measure for a fixed solution on howmuch the uncertain
parameter can deviate from a nominal value while still being an (almost) optimal
solution. There are many publications regarding the stability radius in the context of
(linear) optimization. For an overview, we refer to Weiß (2016).
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Let x̄ ∈ R
n denote an optimal solution to a parameterized optimization problem

with fixed parameter ū ∈ U of the form

min
x∈X f (x, ū),

where the set of feasible solutions is denoted by X ⊆ R
n . The solution x̄ is called

stable if there exists a ρ > 0 such that x̄ is ε-optimal, i.e. f (x̄, u) ≤ f (x, u)+ε for all
feasible solutions x ∈ X with an ε ≥ 0, for all uncertainty scenarios u ∈ Bρ(ū). The
stability radius is given as the largest such value ρ. Altogether, it can be calculated
for a given solution x̄ ∈ X and a budget ε ≥ 0 by

(PSR) max
ρ≥0

ρ

s.t. f (x̄, u) ≤ f (x, u) + ε ∀x ∈ X ,∀u ∈ Bρ(ū).

To compare this concept with the concept of inverse robustness, we let the
uncertainty set be U :=R

m and define W:={W (d):=Bd(ū) | d:=[0,∞)}. Instead of
considering the volume vol(W (d))we can simply consider the radius asmerit function
V (W (d)) = d.

Further, we consider the so called regret (see e.g. Inuiguchi and Sakawa 1995). For
a scenario u ∈ U let f ∗(u):=minx∈X f (x, u). If we now consider as an objective
function f (x, u) − f ∗(u) and consider an budget ε > 0 then we obtain the following
inverse robust optimization problem:

(PIROP,SR) max
x∈X ,d≥0

d

s.t. f (x, u) − f ∗(u) ≤ ε ∀u ∈ W (d).

The difference to the problem (PSR) is that we no longer consider a fixed point x̄ ,
but allow the problem to find a point such that the regret is minimal. If we denote the
optimal solution of (PSR) by ρ∗ and the optimal solution of (PIROP,SR) by x∗, d∗ we
obtain the following inequality:

ρ∗ ≤ d∗.
To obtain an equality one could replace the feasible set X by a set containing only the
nominal solution x̄ . In this case we can exactly model the problem (PSR) as an inverse
robust optimization problem.

While the stability radius compares a fixed decision x̄ with all other feasible choices
x ∈ X , the resilience radius allows to change the former optimal decision to gain
feasibility. For an introduction into this topicwe also recommend (Weiß 2016). Given a
budget w.r.t. the objective value, the resilience radius searches the biggest ball centered
at a given uncertainty scenario that satisfies feasibility with respect to the original
problem. If we denote the optimal solution of a parameterized optimization problem
with fixed parameter ū again by x̄ , then x̄ is called B-feasible for some budget B ∈ R

and some scenario u ∈ U if f (x̄, u) is lower than B.
Then, the resilience ball of a B-feasible solution x̄ around a fixed scenario ū ∈ U

is defined as the largest radius ρ ≥ 0 such that x̄ is B-feasible for all scenarios in

123



130 H. Berthold et al.

this ball. Finally the resilience radius is the biggest radius of a resilience ball around
some x ∈ X and can be calculated by solving the following optimization problem:

max
x∈X ,ρ≥0

ρ

s.t. f (x, u) ≤ B ∀u ∈ Bρ(ū).

Letting as above W:={W (d):=Bd(ū) | d:=[0,∞)} and V (W (d)) = d, the problem
is directly equivalent to the following inverse robust optimization problem:

max
x∈X ,d≥0

d

s.t. f (x, u) ≤ f (x̄, ū) + ε ∀u ∈ W (d),

where ε:=B − f (x̄, ū).

5.2 Radius of robust feasibility

The radius of robust feasibility is a measure on the maximal ’size’ of an uncertainty
set under which one can ensure the feasibility of the given optimization problem. It
is discussed for example in the context of convex programs (Goberna et al. 2016),
linear conic programs (Goberna et al. 2021) and mixed-integer programs (Liers et al.
2021). For a recent survey on the radius of robust feasibility, we refer to Goberna et al.
(2022).

The radius of robust feasibility ρRFF is defined as

ρRFF := sup{α ≥ 0 : (PRα) is feasible},

where

(PRα) min
x∈Rn

c�x

s.t. Ax ≤ b ∀(A, b) ∈ Uα,

withUα:=( Ā, b̄)+αZ for nominal values Ā ∈ R
m×n, b̄ ∈ R

m and Z being a compact
and convex set. Since we are only interested in the feasibility of (PRα), we can replace
its objective function by 0. Therefore, given a fixed, convex, compact set Z we can
compute the radius of robust feasibility by solving the following optimization problem:

ρRFF := sup
x∈Rn ,α≥0

α

s.t. Ax ≤ b ∀(A, b) ∈ Uα,

with Uα:=( Ā, b̄) + αZ . To compare this concept to the concept of inverse robust-
ness, we define W (d):=ū + dZ as subsets of U :=R

mn+m characterized by d ∈
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D:=[0,∞). Furthermore we let W:={W (d) | d ∈ [0,∞)} and use the merit func-
tion V (W (d)):=d. Since we do not consider an objective function, we drop the budget
constraint (or have the always satisfied constrained 0 ≤ 0+ ε). Thus, given a nominal
scenario ū:=( Ā, b̄) ∈ U and a function g(x, (A, b)):=Ax − b, we obtain the inverse
robust problem

sup
x∈Rn ,d≥0

d

s.t. Ax ≤ b ∀(A, b) ∈ W (d).

We see that this way to calculate the radius of robust feasibility can be interpreted as
a special inverse robust optimization problem, where we are searching for sets of the
form ū + αZ and where we are not interested in the budget constraint. The radius of
robust feasibility allows us to analyze problems without any pre-defined values such
as the given budget ε ≥ 0 or the nominal solution f ∗. But, the certain structure of the
set Z is rather restrictive and we do not know how the objective value of a solution x
with a large radius α deviates from the nominal solution value.

6 A bi-criteria problem

We have seen that some already existing concepts can be interpreted as specific inverse
robust problems, such as the resilience radius and the radius of feasible stability. On
the one hand, the concept of inverse robustness unites these approaches into a bigger
framework allowing questions to be answered in a more generic context. On the other
hand, new problem formulations arise easily as we will see in this final example. To
this end, we consider a bi-criteria optimization problem with an inequality constraint
as the original problem. We assume that both objectives as well as the constraint are
influenced by an uncertainty for which we have distributional information. In detail,
we focus on the problem

min
x∈R { f1(x, u):= − x + u, f2(x, u):=2x − u}
s.t. g(x, u):=x(u − 1) + exp(u) − 1 ≤ 0.

Please note that the constraint is linear with respect to the decision parameter x ∈ R,
but nonlinear in the uncertainty u ∈ U , such that a solution for a nominal scenario can
be easily computed, while the analysis of the behavior with respect to the uncertainty
is not trivial. Fixing the nominal scenario u = 0, we can compute the Pareto-front F∗
as

F∗ = {t(−1, 2)�, t ≥ 0}.

After considering the original problem using a fixed nominal scenario, we now state
the inverse robust problem. We allow a generic budget ε = (ε1, ε2)

� ∈ R
2≥0 and fix

a point on the Pareto-front, i.e. f ∗ = (−2, 4)� ∈ F∗.
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Additionally, we assume that our uncertainty is given by a normal-distributed ran-
dom variable u ∼ N (0, 1). Consequently, we focus on the cover space W = B(R),
where B(R) denotes the σ -algebra of Borel-measurable sets of R. We want to maxi-
mize the probability of uncertainties we can handle while not losing more than ε from
our solution f ∗, which leads to:

sup
x∈R,W∈B(R)

P(u ∈ W )

s.t. f1(x, u) ≤ f ∗
1 + ε1 ∀u ∈ W ,

f2(x, u) ≤ f ∗
2 + ε2 ∀u ∈ W ,

g(x, u) ≤ 0 ∀u ∈ W ,

0 ∈ W .

As this formulation is numerically challenging, we use the statements from Sect. 2
to reformulate it. Although all statements are formulated for only one objective, it is
easy to check that they carry over to the case of multiple objectives and can be used
to investigate the present example.

As f1 is increasing and f2 is decreasing w.r.t. x , we can substitute X = R by
a compact interval X̃ depending on the budget ε. According to Theorem 3.4 then an
optimal solution (x∗,W ∗) exists and we can replace the supremum of the last problem
by a maximum.

As B(R) is too large as a search space, we substitute it by the set of intervals
W (d):=[d1, d2] defined by elements of the design space D:={d ∈ R

2 d1 ≤ d2}.
Since f1(x, ·), f2(x, ·), g(x, ·) are convex functions w.r.t. u ∈ R for any x ∈ R,
we can use Lemma 3.5. As the describing functions f1, f2, g are continuous w.r.t.
u we can use Lemma 3.6 and by Lemma 3.7 we focus on a bounded solution set
as h(x, u) = max{ f1(x, u), f2(x, u), g(x, u)} is a coercive function w.r.t. u for any
arbitrary x ∈ R. Consequently, the choice of designs W (d) = [d1, d2], d1, d2 ∈ R

to search for a convex, closed, bounded set in R is appropriate and leads to the same
solution as considering all W ∈ B(R).

We collect this simplification in the following proposition a proof is given in the
Appendix.

Proposition 6.1 (Reduced problem reformulation) The inverse robust example prob-
lem can be simplified to the reduced inverse robust example problem given as:

(Pred) max
x∈R,d1,d2∈R2

P(u ≤ d2) − P(u ≤ d1)

s.t. − x + d2 ≤ −2 + ε1,

2x − d1 ≤ 4 + ε2,

x(d2 − 1) + exp(d2) − 1 ≤ 0,

d1 ≤ 0,

0 ≤ d2 ≤ 1,

0 ≤ x .
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Fig. 1 Optimal objective value V (W∗) for different values ε1, ε2 ≥ 0

Furthermore, this problem is a convex optimization problem w.r.t. (x, d)� ∈ X × D
and has a solution for all ε ∈ R

2≥0.

The solutions corresponding to the budgets εi ∈ {0, 0.5, 1, . . . , 5}, i = 1, 2 are
visualized in Fig. 1 where the optimal objective values of (Pred) are shown. We see
that without budget (meaning ε1 = ε2 = 0) the solution does not allow any uncer-
tainty, i.e. W (d∗) = {0}. If we allow to differ from the nominal values f ∗

1 or f ∗
2 ,

we gain more robustness by increasing ε1 at first. For each ε2 there is an ε′
1 such

that for ε1 ≥ ε′
1 the solution does not change anymore. A proof of this can be found

in Proposition A.1 in the “Appendix”. For larger ε2 the objective value converges
towards P(u ≤ 1) ≈ 0.842. We can understand this as on the one hand the deci-
sion

xk = − k

(
1 − exp

(
1 − 1

k

))
,

d1,k = − k,

d2,k = 1 − 1

k

is feasible for (Pred) with the budgets ε1 = 0 and ε2,k = −2k(1− exp(1− 1
k ))+ k for

large k ∈ N. On the other hand, P(u ≤ 1) is an upper bound for IROP by the definition
of the equivalent problem (Pred). This causes that the objective value has to converge
towards P(u ≤ 1) for ε2 → ∞.

Some of the optimal solution sets W ∗ and the robustified decisions x∗ can be seen
in Figs. 2 and3 for different values of ε. In contrast to the resilience ball and stability
radius approach, the solution sets of this inverse robust problem does not satisfy an
ordering w.r.t. ⊆ if ε increases component-wise. This behavior can be seen in Fig. 2
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Fig. 2 Optimal arguments x∗ as red line and W∗ as blue area for different values ε1 while fixing ε2:=0

Fig. 3 Optimal arguments x∗ as red line and W∗ as blue area for different for different values ε2 while
fixing ε1:=0

and is caused by a change of the decision x∗(ε). In return higher objective values are
achievable.

7 Conclusion

Given a parameterized optimization problem, a corresponding nominal scenario, and
a budget, one can ask for a solution that is close to optimal with respect to the objective
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function value of the nominal optimization problem, while being feasible for as many
scenarios as possible.

In this article, we introduced an optimization problem to compute the best coverage
of a given uncertainty set. In Sect. 2 we introduced the inverse robust optimization
problem (IROP) and discussed some differences to worst-case robustness using two
simple examples. In the next section we then investigated the existence of solutions
and some structural properties of the solutions. In Sect. 4 we discussed different cover
spaces that satisfy the assumptions needed for the given structural results of Sect. 3.
After comparing IROP with the stability radius, the resilience radius, and the radius
of robust feasibility in Sect. 5, we provided an example in Sect. 6 that demonstrates
the flexibility of the concept of inverse robustness.

This flexibility could in future research be investigated in the light of other
robustness concepts. Interesting examples are for example a comparison to Gamma-
robustness, or the application of the approach to adjustable robustness. As the last
example showed, it should in principle also be possible to apply the concept in a
multicriteria setting. In Sect. 2 we discussed the differences to a worst case robust
optimization using two simple examples. In future research it will be interesting to
compareworst-case robust optimization and inverse robustness using real-world exam-
ples.
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Appendix A: Properties of Example 6

Proof of Proposition 6.1 As discussed in Sect. 6 it is enough to consider bounded inter-
vals. Thus, we know that the problem is equivalent to

max
x∈R,d1,d2∈R

P(u ∈ [d1, d2])
s.t. − x + u ≤ −2 + ε1 ∀u ∈ [d1, d2],

2x − u ≤ 4 + ε2 ∀u ∈ [d1, d2],
x(u − 1) + exp(u) − 1 ≤ 0 ∀u ∈ [d1, d2],
0 ∈ [d1, d2].

This problem can be reformulated by computing the maxima within the budget and
feasibility constraints

arg max
u∈[d1,d2]

−x + u = {d2},
arg max

u∈[d1,d2]
2x − u = {d1},

arg max
u∈[d1,d2]

x(u − 1) + exp(u) − 1 = {d2}.

To determine the maximal argument in the feasibility constraint we used the identity
∂ug(x, u) = x + exp(u) and that 0 ∈ [d1, d2] implies that g(x, 0) = −x ≤ 0 is
a necessary condition for a feasible choice of x . Therefore ∂ug(x, u) > 0 holds for
all feasible choices of x and u ∈ R. In a last step, we obtain the maximizer d2 by
considering g(x, u) = ∫ u

d1
∂ug(x, w)dw.

The last constraint also shows that d2 ≤ 1. Otherwise if d2 > 1 we would violate
the feasibility constraint with x ≥ 0 via

x(d2 − 1) + exp(d2) − 1 > 0.

This means that we receive the following equivalent problem

(Pred) max
x∈R,d1,d2∈R2

P(u ≤ d2) − P(u ≤ d1),

s.t. − x + d2 ≤ −2 + ε1, (A1)

2x − d1 ≤ 4 + ε2, (A2)

x(d2 − 1) + exp(d2) − 1 ≤ 0, (A3)

d1 ≤ 0,

0 ≤ d2 ≤ 1,

0 ≤ x .

The objective function is concave in d1 ∈ (−∞, 0] and d2 ∈ [0,∞). The nonlinear
constraint is convex in x and d2, as x ≥ 0 and d2 ∈ [0, 1]. Since all other constraints
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are linear w.r.t. (x, d) ∈ R
3, the reduced problem is a convex optimization problem.

The existence of a solution is guaranteed by Theorem 3.4. �
For the following proposition denote for a given budged ε the optimal solution of

the reduced problem (Pred) by x∗(ε), d∗
1 (ε) and d∗

2 (ε)

Proposition A.1 (Behavior w.r.t. increasing budgets) Fixing ε0:=(0, 0)� leads to the
solution x∗ = 2, d∗ = (0, 0)� and therefore V (W (d∗(ε0))) = 0. For any fixed ε1 ≥ 0
we get:

• limε2→∞ x∗(ε) = ∞,
• limε2→∞ d∗

1 (ε) = −∞,
• limε2→∞ d∗

2 (ε) = 1.

For any fixed ε2 ≥ 0 and ε1 ≥ ε̄1:=3 the second budget constraint and the feasibility
constraint are active. Since the feasibility constraint is independent of ε, it will not
change w.r.t. an increasing budget and therefore we obtain

• limε1→∞ x∗(ε) = x∗(ε̄1, ε2),
• limε1→∞ d∗

1 (ε) = d∗
1 (ε̄, ε2),

• limε1→∞ d∗
2 (ε) = d∗

2 (ε̄, ε2).

Proof of Proposition A.1 (i) Case ε = (0, 0)�. Given the budget ε:=(0, 0)�, the
reduced inverse robust example problem can be formulated as:

max
x∈R,d1,d2∈R

P(u ≤ d2) − P(u ≤ d1)

s.t. − x + d2 ≤ −2, (A4)

2x − d1 ≤ 4, (A5)

x(d2 − 1) + exp(d2) − 1 ≤ 0,

d1 ≤ 0,

0 ≤ d2,

0 ≤ x .

Considering the budget constraints (A4) and (A5), we conclude

x ∈
[
2 + d2, 2 + d1

2

]
.

Since d1 ≤ 0, d2 ≥ 0 has to hold, it follows directly

x = 2 ∧ d1 = 0 ∧ d2 = 0.

Since this is the only feasible point, it is also the optimal solution of the given
problem.

(ii) Case lim ε2 → ∞. We have seen in Sect. 6 that for ε1 = 0 and ε2 going
to infinity there is a sequence of feasible points such that the objective value
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converges towards P(u ≤ 1). This means that for the optimal objective value
we have

lim
ε2→∞P(u ∈ [d∗

1 (ε), d∗
2 (ε)]) = P(u ∈ (−∞, 1]).

This is only possible if

lim
ε2→∞ d∗

1 (ε) = −∞,

lim
ε2→∞ d∗

2 (ε) = 1.

Considering the feasibility constraint we receive

x∗(ε) ≥ exp(d∗
2 (ε)) − 1

1 − d∗
2 (ε)

.

This shows that we have limε2→∞ x∗(ε) = ∞.
iii) Case lim ε1 → ∞.

Let us fix an arbitrary ε2 ≥ 0. If we analyze the reduced inverse robust example
problem again, we can rewrite its first budget constraint as

d2 ≤ −2 + ε1 + x .

As we know that the variable d2 is bounded above by 1 and we already men-
tioned that a feasible x has to satisfy x ≥ 0. Consequently the first budget
constraint is fulfilled for all ε1 ≥ 3.

Because ε1 just occurs in the first budget constraint of the reduced inverse
robust example problem, we know that for ε1 ≥ 3 the solution of the problem
instance just depends on the choice of ε2 ≥ 0 what proves the claim.

�
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