Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/314069 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] Journal of Applied Economics [ISSN:] 1667-6726 [Volume:] 22 [Issue:] 1 [Year:] 2019 [Pages:] 468-483
Verlag: 
Taylor & Francis, Abingdon
Zusammenfassung: 
In this study, we attempt to predict global agricultural commodity futures prices through analysis of multivariate time series. Our motivation is based on the notion that datasets of agricultural commodity futures prices involves a mixture of long- and short-term information, linear and non-linear structure, for which traditional approaches such as Auto-Regressive Integrated Moving Average (ARIMA) and Vector Auto-Regression (VAR) may fail. To tackle this issue, Long- and Short-Term Time-series Network (LSTNet) is applied for prediction. Empirical results show that LSTNet achieves better performance over that of several state-of-the-art baseline methods on average and in most periods based on three performance evaluation measures and two tests of performance difference.
Schlagwörter: 
Agricultural commodity futures
long- and short-term timeseries network
long-term information
prices prediction
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
2.21 MB





Publikationen in EconStor sind urheberrechtlich geschützt.