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ARTICLE

Agricultural commodity futures prices prediction via long-
and short-term time series network
Hongbing Ouyanga, Xiaolu Weia and Qiufeng Wub

aSchool of Economics, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; bSchool
of Science, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China

ABSTRACT
In this study, we attempt to predict global agricultural commodity
futures prices through analysis of multivariate time series. Our moti-
vation is based on the notion that datasets of agricultural commodity
futures prices involves a mixture of long- and short-term information,
linear and non-linear structure, for which traditional approaches such
as Auto-Regressive Integrated Moving Average (ARIMA) and Vector
Auto-Regression (VAR) may fail. To tackle this issue, Long- and Short-
Term Time-series Network (LSTNet) is applied for prediction.
Empirical results show that LSTNet achieves better performance
over that of several state-of-the-art baseline methods on average
and in most periods based on three performance evaluation mea-
sures and two tests of performance difference.
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1. Introduction

Forecasting agricultural commodity futures prices is an important subject in agricul-
tural domain, not only in providing price information of agricultural commodity in
advance which decision makers rely on, but also reducing the uncertainty and risks of
agricultural markets (Wang, Yue, Wei, & Lv, 2017). Futures prices are also used by crop
insurance programs to decide their first-stage and harvest prices (Zulauf, Rettig,
Roberts, & Matt, 2015). However, agricultural commodity futures characteristics,
noisy and non-stationary, make prediction face challenges (Xiong, Li, Bao, Hu, &
Zhang, 2015). “Noisy” implies that there is insufficient information to observe past
behaviors of agricultural commodity futures. “Non-stationary” means that agricultural
commodity futures may change dramatically in different periods. These characteristics
lead to poor agricultural commodity futures’ prediction results as predicted by tradi-
tional econometric models such as linear model, Auto-Regressive Integrated Moving
Average (ARIMA) and Vector Auto-Regression (VAR) (Onour & Sergi, 2011; Zulauf,
Irwin, Ropp, & Sberna, 1999.; Zafeiriou & Sariannidis, 2011). The aforementioned
methods are generally based on the assumption that variables are independent, normal
distribution, which is contradicted with real market.

In recent years, time series prediction based on neural networks has been popular.
Unlike traditional models, deep neural networks have several distinct advantages as
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non-parametric, self-learning, non-assumption and noise tolerant, which are unavail-
able in traditional models (Haykin & Network, 2004; Hochreiter & Schmidhuber, 1997;
Sharda & Patil, 1992). Therefore, deep neural networks might be more effective in
forecasting agricultural commodity futures price in comparison to traditional models
(Kaastra & Boyd, 1995; Zhang & Hu, 1998).

However, machine learning techniques, which are seldom used in commodity
futures prices prediction, especially agricultural commodity futures prices. In this
study, we attempt to predict global agricultural commodity futures prices through
Long- and Short-term Time Series Network (LSTNet) developed by Guokun Lai et al.
(Lai, Chang, Yang, & Liu, 2018). Based on the notion that governments usually control
the price and quantity of agricultural commodities, price of agricultural commodities is
more susceptible to government policies, which have a time lag. Therefore, datasets of
agricultural commodity futures prices might involve a mixture of extreme long- and
short-term information, LSTNet method that could capture such information might be
more accurate in the prediction of agricultural commodity futures prices.

The rest of this article is organized as follows. Section 2 summarizes the literature review
of time series prediction in machine learning. Section 3 describes the mathematical model
on agricultural commodity futures price prediction and detailed introduction to LSTNet
method. Section 4 describes the empirical preliminaries, which contain empirical dataset
and selection of evaluation criteria. Section 5 presents the empirical steps of LSTNet
method and the empirical results. Finally, the conclusion is drawn in Section 6.

2. Literature review

Since the first study of Tomek and Gray (1970), the predictive performance of agricultural
futures has been the focus of scholars’ in-depth study. Based on empirical forecast assess-
ment, they found that futures prices are good price predictors in the corn and soybean
market. However, the results of many subsequent studies on different agricultural futures
markets have been mixed. This is partly due to the highly dependency of forecasting
performance on specific market conditions and traditional econometric models, which
are usually used by researchers (Garcia & Leuthold, 2004; Kenyon, Jones, &McGuirk, 1993;
Kofi, 1973; Zulauf et al., 1999). Moreover, there mainly exist two problems in literature
related to agricultural futures prediction through traditional econometric models. One is
that high dimensional multivariate time series prediction is rarely analyzed due to the
model capacity and their high computational cost (Zafeiriou & Sariannidis, 2011; Zulauf
et al., 1999). The second one is that these models are generally based on the assumption that
variables are independent, normal distribution, which is unrealistic in the real market
(Onour & Sergi, 2011).

Recently, deep neural networks provide a promising tool in time series forecasting
(Adya & Collopy, 1998; Tang, De Almeida, & Fishwick, 1991) due to its ability to model
nonlinear pattern, realize complex causal relationship, and learn from huge history
dataset. In the field of time series prediction through deep neural networks, there exist
various approaches, such as long and short-term memory (LSTM) (Jia, 2016) and
support vector machine (SVM) (Tay & Cao, 2001). The studies related to time series
prediction through deep neural network mainly have three categories. One is to identify
statistically significant events in time series (Chau & Wong, 1999; Liu & Yue, 2018;
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Malhotra, Vig, Shroff, & Agarwal, 2015; Namaki, Lin, & Wu, 2017). The second one is
to seek and predict inherent structure in the time series. The third one is to predict
numerical value of time series accurately.

However, the performance of machine learning in agricultural commodity futures
prediction is rarely explored (Xiong et al., 2015). The few studies related to agricultural
commodity futures prediction through machine learning mainly focus on interval
forecasting of agricultural commodity futures prices. Moreover, there exist four pro-
blems in agricultural commodity futures prediction through neural networks. One is
that existing studies mainly focus on interval prediction while ignore the point fore-
casting of agricultural commodity futures prediction in neural networks fields.
The second one is that existing few studies mainly ignore the dynamic dependencies
among multiple variables. The third one is that existing methods fail to capture very
long-term information due to gradient vanishing. The forth one, which is also the most
important one, is that these studies fall short in distinguishing a mixture of short-term
and long-term repeating patterns explicitly (Cao & Tay, 2003; Connor, Atlas, & Martin,
1992; Dasgupta & Osogami, 2017).

The contributions of this article are, firstly, to fill the gap between agricultural
commodity futures prices’ point forecasting and machine learning techniques, and
secondly, to predict agricultural commodity futures prices simultaneously with full
consideration of interaction among variables, which is helpful to make investment
portfolio of agriculture commodity futures, and thirdly, to capture extremely long-
term and short-term information of agricultural commodity futures prices with
Recurrent-skip module in the LSTNet method, and fourthly, to measure relative fore-
cast performance of LSTNet method and other methods on average as well as in
dynamic environment. Therefore, we can predict agricultural commodity futures prices
more accurately through the application of LSTNet method and verify relative predic-
tion performance more efficiently with several robust tests.

3. Agricultural commodities futures price prediction based on Lstnet

3.1. Mathematical model on agricultural commodities futures price prediction

This article focuses on forecasting multivariate agricultural commodity futures prices with
long-term and short-term repeating patterns. Dataset on agricultural commodity futures
pricesmainly has two characteristics: correlation and a combination of short and long-term
repeating patterns. Since agricultural commodities change collaboratively due to weather,
market, and other conjunctural factors, dataset on agricultural commodity futures prices
consists of 12 variables, including CZCE cotton, CZCE sugar, ICE eleventh sugar, DCE
bean, DCE bean II, DCE soybean oil, DCE cardamom, CZCE strong wheat, DCE corn, ICE
coffee, ICE cocoa, ICE frozen concentrated orange juice. Moreover, the subsequences of
these variables represent short-term and long-term repeating patterns. This problem could
be solved by constructing convolutional neural network (CNN) module and Recurrent-
skip component, which are introduced by LSTNet method. CNN module is able to extract
short-term patterns in the time dimension as well as local dependencies between variables,
while Recurrent-skip component could capture extremely long length of one pattern with
temporal skip-connections. Therefore, we could discover short-term and long-term
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repeating patterns of multivariate agricultural commodity futures prices and predict prices
more accurately.

This article aims at predicting agricultural multivariate commodity futures prices.
Given datasets X ¼ xtf gTt¼1, wherein xt 2 Rn and n is the variable dimension, this article
is interested in the task of forecasting a series of agricultural commodity futures prices
in a rolling forecasting step. Instead of looking at a single independent variable yt, this
article predicts xTþh with n dimensions simultaneously, wherein h is the desirable

horizon ahead of the current time stamp and xtf gTt¼1 are available. Similarly, to forecast

xTþhþ1 in the next time step and assume xtf gTþ1t¼1 are available. Therefore, the input

matrix of this article at time stamp T is X ¼ xtf gTt¼12 Rn�T, and the output matrix
is xTþh 2 Rn.

3.2. LSTNet on agricultural commodities futures price prediction

Neural network is widely used for time series prediction. In the prediction process,
three problems must be considered. The first one is the consideration of very long-term
information and the combination of short-term and very long-term repeating patterns.
Many studies prefer time series prediction of short-term repeating patterns rather than
a combination of short-term and very long-term repeating patterns, which is used by
the method applied in this article. The second one is the ignorance of linear and non-
linear structures, which usually yield unsatisfactory outcomes. The last problem is the
efficiency of the forecasting process. With the increase of data size, the time needed to
predict time series increases remarkably. Therefore, an algorithm to reduce the total
number of data points and the operation time of time series prediction is indispensable.
These three problems are closely related to time series prediction process.

LSTNet was proposed by Guokun Lar et al. in 2018, which was accepted by the
International Conference on Special Interest Group on Information Retrieval (SIGIR).
Compared to other forecasting methods, LSTNet is the first method to predict
n dimensional time series with a mixture of short-term and extremely long-term
repeating patterns, which could solve the above problems. In this section, we describe
the details of LSTNet algorithm applied in this article.

LSTNet consists of a non-linear part and a linear part. The non-linear part includes
a convolutional layer, a dense layer consists of recurrent component and recurrent-skip
component, a temporal attention layer, while the linear part uses a autoregressive model
(AR) to forecast the result.

3.2.1. Convolutional layer
The first layer of LSTNet is a convolutional network. Given the input matrix X, this
section extracts short-term patterns and interdependences among 12 variables. The
output in this section can be expressed as,

hk ¼ RELU Wk�Xþ bkð Þ (1)

where w denotes the number of width filters, n is the number of variables which is set to
be 12 in this article, * is the convolution operation, and the RELU function is
RELU(x) = max(0,x).
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3.2.2. Recurrent component and recurrent-skip component
Given the output of convolutional layer, these recurrent component and recurrent-skip
component aims at capturing long-term and very long-term information, the outputs of
recurrent layer and recurrent-skip layer are the hidden states at each time stamp. The
hidden states of recurrent layer’s units at time t can be formulated as,

rt ¼ σ xtWxr þ ht�1Whr þ brð Þ

ut ¼ σ xtWxu þ ht�1Whu þ buð Þ

ct ¼ RELU xtWxc þ rt � ðht�1Whcð Þ þ bcÞ (2)

ht ¼ 1� utÞ � ht�1 þ ut � ctð Þ
where � is the element-wise product, σ is the sigmoid function, and xt is the input

of recurrent layer as well as the output of convolutional layer at time stamp t.
However, due to gradient vanishing, the Recurrent layers with GRU (Chung,

Gulcehre, Cho, & Bengio, 2014) in this article may fail to capture very long-term
correlation in real world. LSTNet method proposes a recurrent structure with temporal
skip-connections to investigate history information in a longer time period, namely
Recurrent-Skip Component. The updating process can be expressed as,

rt ¼ σ xtWxr þ ht�pWhr þ br
� �

ut ¼ σ xtWxu þ ht�pWhu þ bu
� �

ct ¼ RELU xtWxc þ rt � ðht�pWhc
� �þ bcÞ (3)

ht ¼ 1� utÞ � ht�p þ ut � ct
� �

where p is the number of hidden cells skipped through which is determined
empirically in this article.

Given outputs of the Recurrent component at time t and Recurrent-skip component
from time t-p + 1 to t, denoted by hRt ; h

S
t�pþ1; h

S
t�pþ2 . . . ; hSt

n o
, this article uses

a dense layer to produce the prediction result of the LSTNet’s non-linear part which
can be expressed as,

hDt ¼WRhRt þ
Xp�1

i¼0 WS
i h

S
t�i þ b (4)

3.2.3. Temporal attention layer
However, the Recurrent-skip layer component maybe unfavorable in the non-seasonal
time series prediction or repeating patterns forecasting with flexible time period. To
alleviate this problem, LSTNet develops an attention mechanism (Bahdanau, Cho, &
Bengio, 2014). The output of this temporal attention layer is a non-linear projection
part, which is computed as,
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hDt ¼W ct; h
R
t�1

� �þ b (5)

where hRt�1 is last window hidden state, ct ¼ Htαt is the weighted context of hidden
states of the input matrix, αt is the attention weights which can be expressed as,

αt ¼ AttnScore HR
t ; h

R
t�1

� �
(6)

3.2.4. Autoregressive layer
Due to non-linear property of Convolutional layer and Recurrent layer, LSTNet method
decomposes the prediction into a non-linear part, which is captured by Convolutional
layer and Recurrent layer, and a linear part, which is solved by Autoregressive (AR)
model in this section. Given the initial input X, we can get the forecasting result of the
linear part through AR Layer, which is formulated as follows,

hLt;i ¼
Xqar�1

k¼0 War
k yk�1;i þ bar (7)

Then, the forecasting result of LSTNet can be expressed as follows,

Ŷt ¼ hDt þ hLt (8)

The pseudo code of Toeplitz Graphical Lasso is described in Table 1.

Table 1. LSTNet framework.
Algorithm 1 LSTNet framework

Input initial X ¼ xtf gTt¼1, wherein xt 2 Rn (n = 12)

Output a mixed output Ŷt of a linear part hLt and a non-linear part hDt
Initialize best_val = 10,000,000

for i ← 1 to epoches do

hk  RELU Wk�Xþ bkð Þ
if p > 0 do

ht  1� utÞ � ht�1 þ ut � ctð Þ
ht  1� utÞ � ht�p þ ut � ct

� �
hDt  WRhRt þ

Pp�1
i¼0

WS
i h

S
t�i þ b

else
hDt  W ct; h

R
t�1

� �þ b

if highway > 0 do

hLt;i  
Pqar�1
k¼0

War
k yk�1;i þ bar

Ŷt  hDt þ hLt
if val_loss < best_val

best_val = val_loss

model save

else

continue

end
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4. Data

4.1. Data set and data preprocessing

The selection of agricultural commodity futures and time period are based on a trade-
off between more variables and longer price histories, which might be helpful in the
training of LSTNet method. However, the LSTNet method applied in this article has
been well verified in the datasets of a relatively short time period and a long time
period. Therefore, 12 agricultural commodity futures collated from Wind platform are
analyzed in the empirical section. They are CZCE cotton (CF.CZC), CZCE sugar (SR.
CZC), ICE sugar (SB.NYB), DCE bean (A.DCE), DCE bean II (B.DCE), DCE soybean
oil (Y.DCE), DCE cardamom (M.DCE), CZCE strong wheat (WH.CZC), DCE corn (C.
DCE), ICE coffee (KC.NYB), ICE cocoa (CC.NYB), ICE frozen concentrated orange
juice (0J.NYB). The data set cover the time period from 01/09/2006 up to 01/10/2019.

More specifically, closing prices are used as datasets, which are illustrated in Figure 1.
In order to have a better understanding of historical variation, (a), (b), (c) show
agricultural commodity futures prices in daily, monthly, and yearly scale, respectively.
Moreover, Figure (d) shows the daily closing prices of agricultural commodity futures

(c) 

(a) (c) 

(d) 

Figure 1. Closing prices of agricultural commodity futures prices.
Source: Wind, 2006–2019

474 H. OUYANG ET AL.



prices during 2006. The short-term and long-term repeating patterns are not clear due
to nonstational time series or patterns with flexible time period. Each sample data of
agricultural commodity futures prices is split into training set (60%), validation set
(20%), test set (20%) in chronological order. The study uses validation set to tune hyper
parameters, while uses test set to evaluate and compare forecasting performance of
LSTNet and other models. In addition, the Null values are immediately dropped due to
its little scale.

4.2. Unit root analysis

Agricultural commodity futures have characteristics of noisy and non-stationary, which
may make prediction results unsatisfied (Xiong et al., 2015). Therefore, this section
implements a comprehensive unit root test to analyze the stationarity of agricultural
commodity futures, which include Levin-Lin-Chu test (LLC), Im-Pesaran-Shin test
(IPS) and Phillips-Perron test (PP). The results of statistical value are found in Table 2.

Table 2 shows the stationary test results of agricultural commodity futures. Clearly,
with the null hypothesis that assumes nonstationary, agricultural futures are not
stationary while the first-order difference of all agricultural commodity futures is
stationary. Therefore, in order to compare the forecasting results of LSTNet method
and other techniques, such as CNN and RNN, and verify the performance of LSTNet
method, we will apply these techniques in datasets with no difference and first order
difference.

4.3. Performance criteria

The prediction performance of LSTNet method is compared with CNN, RNN, ARIMA,
VAR. CNN, RNN, VAR are able to analyze multivariate input and output, while
ARIMA is a single output method in which we will train n models independently.
Here, n is the number of variables in datasets, which is set to be 12 in this article. In
order to verify the validity of LSTNet method proposed in this article, we select five
evaluation methods, including three performance measures and two tests of perfor-
mance differences. Performance measures include Root Relative Squared Error (RSE),
Relative Absolute Error (RAE), Empirical Correlation Coefficient (CORR). The RSE
and RAE are in scaled version, which are designed to make comparisons more efficient
and valid. Tests of performance differences include a multistep conditional predictive
ability test proposed by Giacomini and White (2006) and a fluctuation test proposed by

Table 2. Unit root tests for agricultural commodity futures.
Method Statistic Prob.**

No difference
LLC −0.07687 0.4694
IPS −0.26162 0.3968
PP 22.2885 0.5620
First order difference
LLC −364.143 0.0000
IPS −239.637 0.0000
PP 2812.80 0.0000
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Giacomini and Rossi (2010). Multistep conditional predictive ability test is
a performance test on average, while fluctuation test is a performance test to evaluate
the time-varying relative forecast performance of the models. For tests of relative
forecast performance, we just sum the RSE and RAE of the 12 output variables at
each time point and reject hypothesis that two models have equal out-of-sample
performance when test statistic is larger than the critical value. The definitions of
these criteria are found in Table 3.

Here, Y, bY 2 Rn�T are true values and predicted values of agricultural futures prices,
respectively, n is the number of out of sample forecasts, τ is forecast horizon, T is total sample
size, m is maximum estimation of window size, ht is a test function, ΔLi is out-of-sample

forecast loss differences of two methods, �Zm;n ¼ n�1
PT�τ

t¼m Zm;tþτ , Zm;tþτ ¼ htΔLm;tþτ ,
~Ωn ¼ n�1Zm;tþτZ

0
m;tþτ þ n�1

Pτ�1
j¼1 wn;j �

PT�τ
t¼mþj Zm;tþτZ

0
m;tþτ�j þ Zm;tþτ�jZ

0
m;tþ τ

h i
,

where wn;j is a weight function (West, 1987).

5. Results and discussion

To predict agricultural commodity futures prices, we apply LSTNet method to multi-
variate time series prediction of agricultural commodity futures with no difference and
first order difference. LSTNet uses five components to extract short-term and long-term
repetitive patterns with consideration of linear and non-linear structure of time series.
These five components are convolutional component, recurrent component, recurrent-
skip component, temporal attention component, and autoregressive component. We
repeat the algorithm until we find the lowest validation loss value. The results and
discussion of the empirical research is described in the following section.

In the prices prediction of agricultural commodity futures based on LSTNet, a skip
length p of 24 is found to produce the best possible results. The hidden dimension of
Recurrent and Convolutional layer, the dropout rate, the horizon h and the optimiza-
tion algorithm are arbitrarily chosen to be 50, 0.2, 12, and the Adam algorithm,
respectively. The program is constructed using python 3 language. Table 4 shows the
performance comparison of agricultural commodity futures prices prediction on aver-
age, while relative performances based on MSE and MAE at each point with a horizon

Table 3. Performance criteria and their calculations.
Criteria Calculation

RSE
RSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;tð Þ2ΩTest

Yit�Ŷitð Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;tð Þ2ΩTest
Yit�mean Yð Þð Þ2

q
RAE

RAE ¼
P

i;tð Þ2ΩTest
Yit�Ŷitj jP

i;tð Þ2ΩTest
Yit�mean Yð Þj j

CORR
CORR ¼ 1

n

Pn
i¼1

P
t
Yit�mean Yið Þð Þ Ŷit�mean Ŷið Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t
Yit�mean Yið Þð Þ2 Ŷit�mean Ŷið Þð Þ2

q
Multistep Conditional Predictive Ability
Test Thm;n;τ ¼ n n�1

PT�τ
t¼m

htΔLm;tþτ

� �
~Ω�1n n�1

PT�τ
t¼m

htΔLm;tþτ

� �
¼ n�Z0m;n~Ω

�1
n
�Zm;n

Fluctuation test
FOOSt;m ¼ σ̂�1m�1=2

Ptþm
2�1

j¼t�m=2
ΔLj
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of 6 are reported in Figures 2 and 3, respectively. Moreover, main diagnostic tests of
ARIMA and VAR are reported in Appendix A and B, the numbers within parentheses
are p-value.

Table 4 summarizes the prediction performances of all methods on all test sets
(20%) in all metrics, including RSE, RAE, CORR of LSTNet-Skip, LSTNet-Attn, RNN,
CNN, ARIMA-stationary, VAR-stationary, LSTNet-Skip-stationary, LSTNet-Attn-
stationary, RNN-stationary, CNN-stationary. The data for the last six models is

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 2. Relative performance based on MSE in dynamic environment.
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agricultural commodity futures prices after first-order difference. Moreover, we set
horizon = {3, 6, 9, 12, 15, 18, 21, 24}, respectively. The larger the horizons, the worse
the prediction results. The best result for four method and three metrics is highlighted
in bold face in Table 4. The total count of the bold-faced results is 16 for LSTNet-
Attn, 4 for LSTNet-Skip, 4 for RNN, and 0 for CNN. Moreover, an asterisk sign (*)
indicates that the test rejects equal conditional predictive ability at the 1% level and
that the LSTNet-Attn method outperforms other methods through conditional pre-
dictive ability tests on average.

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3. Relative performance based on MAE in dynamic environment.
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Clearly, even though the periodic patterns of global agricultural commodity futures
prices are not clear and the dataset is nonstationary, LSTNet still perform better than
other neural network methods (RNN, CNN) and traditional econometric methods
(ARIMA, VAR) on average. Specifically, LSTNet-Attn outperforms the neural baseline
RNN, CNN, ARIMA, VAR by 6.52, 21.68, 91.70,91.69% in RSE metric and 10.10, 33.75,
93.67, 93.66% in RAE metric respectively when the horizon is 24, suggesting much
better performance of the proposed method.

Figures 2 and 3 report the results for the GW Fluctuation test in the horizon of 6
which measures relative forecast performances between LSTNet-Attn and other meth-
ods in dynamic environment. The figures report both the Fluctuation test statistic as
well as the one-sided critical value at 5%. It is obvious that LSTNet-Attn has better
forecast performance over ARIMA and VAR. Moreover, the figures point out that there
have been more periods in which LSTNet-Attn performs better than other methods.

The LSTNet-Attn method has robust performance in different metrics, partly due to
its consideration of interdependencies among multiple variables, extremely long-term
information and linear structure.

6. Conclusions

Time series prediction with neural networks provides a fundamental aid for the
comprehension of global agricultural commodity futures prices and, more specifically,
is crucial in reducing uncertainty and risks in agricultural markets. In the literature of
multivariate time series prediction through neural networks, they mainly focus on
forecasting univariate time series without considering interdependencies among differ-
ent variables, and moreover, generally fail to capture very long-term information and
linear structure. In this article we apply a rather different approach: Long- and Short-
Term Time-series network (LSTNet) to predict prices of several global agricultural
commodity futures. LSTNet method is a new prediction model that is able to predict
multivariate time series simultaneously with full consideration of a mixture of extre-
mely long-term and short-term patterns, linear and non-linear structures.

This study applies the LSTNet method to forecast agricultural commodity futures
prices simultaneously. LSTNet method consists of five components, including CNN
component, RNN component, RNN-skip component, Temporal Attention component,
and Autoregressive component. The empirical research shows that by combing the
strengths of convolutional network, recurrent network, and autoregressive component,
LSTNet method significantly improves the state-of-the-art results in multivariate time
series forecasting on the dataset of agricultural commodity futures prices. With the
empirical results, we show the applied LSTNet method is a promising alternative for
multivariate time series forecasting in agricultural commodity futures markets.

There are two promising extensions of multivariate time series prediction in agri-
cultural commodity futures prices. A possible extension of agricultural commodity
futures prices prediction is to investigate possibility of performance improvements in
multivariate time series forecasting when the datasets represent unobvious repetitive
patterns. The other is to analyze automatic adjustment of hyperparameters, including
recurrent-skipped numbers p and horizon h, which are tuned manually in LSTNet.
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Appendix A Diagnostic test of ARIMA*

APPENDIX B Diagnostic test of var*

horizon

Residual Analysis 3 6 9 12 15 18 21 24

Durbin Watson 2.0910 2.0984 2.0916 2.0910 2.1284 2.1119 2.0813 2.1346
Normality_Jarque Bera 372.0859 384.7351 388.2332 400.9036 421.2390 441.8660 462.9237 486.6546

(1.59E-81) (2.86E-84) (4.97E-85) (8.81E-88) (3.38E-92) (1.12E-96) (3E-101) (2.11E-106)
Normality_Omni 67.8933 68.8597 69.0394 69.8428 73.0176 76.5639 77.7150 84.6265

(1.81E-15) (1.12E-15) (1.02E-15) (6.82E-16) (1.39E-16) (2.37E-17) (1.33E-17) (4.20E-19)
aThe numbers within parentheses are p-value.

horizon

Residual Analysis 3 6 9 12 15 18 21 24

Durbin Watson 2.0971 2.1013 2.0986 2.0940 2.1302 2.1142 2.0830 2.1394

Normality_Jarque Bera 382.0133 388.8561 388.0492 402.9957 421.8263 442.8802 467.3759 491.2635
(1.11E-83) (3.64E-85) (5.45E-85) (3.09E-88) (2.52E-92) (6.76E-97) (3.24E-102) (2.11E-107)

Normality_Omni 67.78028 68.76885 68.46677 69.85638 72.86031 76.55144 77.641017 84.97134

(1.91E-15) (1.17E-15) (1.36E-15 (6.77E-16) (1.51E-16) (2.38E-17) (1.38E-17) (3.54E-19)
aThe numbers within parentheses are p-value.
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