Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312291 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] International Journal on Digital Libraries [ISSN:] 1432-1300 [Volume:] 25 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 3-24
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Finding relevant publications in the scientific domain can be quite tedious: Accessing large-scale document collections often means to formulate an initial keyword-based query followed by many refinements to retrieve a sufficiently complete, yet manageable set of documents to satisfy one's information need. Since keyword-based search limits researchers to formulating their information needs as a set of unconnected keywords, retrieval systems try to guess each user's intent. In contrast, distilling short narratives of the searchers' information needs into simple, yet precise entity-interaction graph patterns provides all information needed for a precise search. As an additional benefit, such graph patterns may also feature variable nodes to flexibly allow for different substitutions of entities taking a specified role. An evaluation over the PubMed document collection quantifies the gains in precision for our novel entity-interaction-aware search. Moreover, we perform expert interviews and a questionnaire to verify the usefulness of our system in practice. This paper extends our previous work by giving a comprehensive overview about the discovery system to realize narrative query graph retrieval.
Schlagwörter: 
Narrative information access
Narrative queries
Graph-based retrieval
Digital libraries
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.