Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/311818 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Business & Information Systems Engineering [ISSN:] 1867-0202 [Volume:] 65 [Issue:] 1 [Publisher:] Springer Fachmedien Wiesbaden GmbH [Place:] Wiesbaden [Year:] 2022 [Pages:] 49-64
Verlag: 
Springer Fachmedien Wiesbaden GmbH, Wiesbaden
Zusammenfassung: 
Ever-growing data availability combined with rapid progress in analytics has laid the foundation for the emergence of business process analytics. Organizations strive to leverage predictive process analytics to obtain insights. However, current implementations are designed to deal with homogeneous data. Consequently, there is limited practical use in an organization with heterogeneous data sources. The paper proposes a method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks to overcome this limitation. A case study performed with a medium-sized German manufacturing company highlights the method's utility for organizations.
Schlagwörter: 
Predictive process analytics
Predictive process monitoring
Deep learning
Machine learning
Neural network
Business process anagement
Process mining
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.