Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/311077 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] OR Spectrum [ISSN:] 1436-6304 [Volume:] 46 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 295-330
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Home delivery services require the attendance of the customer during delivery. Hence, retailers and customers mutually agree on a delivery time window in the booking process. However, when a customer requests a time window, it is not clear how much accepting the ongoing request significantly reduces the availability of time windows for future customers. In this paper, we explore using historical order data to manage scarce delivery capacities efficiently. We propose a sampling-based customer acceptance approach that is fed with different combinations of these data to assess the impact of the current request on route efficiency and the ability to accept future requests. We propose a data-science process to investigate the best use of historical order data in terms of recency and amount of sampling data. We identify features that help to improve the acceptance decision as well as the retailer's revenue. We demonstrate our approach with large amounts of real historical order data from two cities served by an online grocery in Germany.
Schlagwörter: 
Historical data
Sampling
Data-driven customer acceptance
Attended home delivery
Vehicle routing with time windows
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.