Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309911 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Statistical Papers [ISSN:] 1613-9798 [Volume:] 64 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 1021-1040
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
In this paper the results of Radloff and Schwabe (Stat Papers 60:165–177, 2019) will be extended for a special class of symmetrical intensity functions. This includes binary response models with logit and probit link. To evaluate the position and the weights of the two non-degenerated orbits on the k -dimensional ball usually a system of three equations has to be solved. The symmetry allows to reduce this system to a single equation. As a further result, the number of support points can be reduced to the minimal number. These minimally supported designs are highly efficient. The results can be generalized to arbitrary ellipsoidal design regions.
Schlagwörter: 
Binary response model
D-optimality
k-dimensional ball
Logit and probit model
Multiple regression model
Simplex
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.