Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309542 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 95 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 327-359
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Continuous-time regime-switching models are a very popular class of models for financial applications. In this work the so-called signal-to-noise matrix is introduced for hidden Markov models where the switching is driven by an unobservable Markov chain. Its relations to filtering, i.e. state estimation of the chain given the available observations, and portfolio optimization are investigated. A convergence result for the filter is derived: The filter converges to its invariant distribution if the eigenvalues of the signal-to-noise matrix converge to zero. This matrix is then also used to prove a mutual fund representation for regime-switching models and a corresponding market reduction which is consistent with filtering and portfolio optimization. Two canonical cases for the reduction are analyzed in more detail, the first based on the market regimes and the second depending on the eigenvalues. These considerations are presented both for observable and unobservable Markov chains. The results are illustrated by numerical simulations.
Schlagwörter: 
Hidden Markov model
Mutual fund
Portfolio optimization
Regime switching
Stochastic filtering
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.